What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Why Spreadsheets can send the Pillars of Solvency II Crashing Down


Solvency II is now fast approaching and while it may provide added protection to policy holders, its impact on the insurance industry is not all a bed of roses. Expect insurance companies to restructure, increase manpower, and raise spending on actuarial operations and risk management initiatives. Those that cannot, will have to go. But what have spreadsheets got to do with all these?

Well, spreadsheets aren’t really the main casts in this blockbuster of a regulatory exercise but they certainly have a significant supporting role to play. Pillar I of Solvency II, which calls for improved supervision on internal control, risk management, and corporate governance, and Pillar II, which tackles supervisory reporting and public disclosure of financial and other relevant information, both affect systems that have high-reliance on spreadsheets.

A little background about spreadsheets might help.

Who needs an IT solution when you can have spreadsheets?

Everyone in any organisation just love spreadsheets; from the office clerk to the CEO. Because they’re so easy to use (not to mention they’re a staple in office computers), people employ them for processing numbers and as an all-around tool for planning, forecasting, reporting, complex modelling, market data analysis, and so on. They make such tasks faster and easier. Really?

You probably haven’t heard of spreadsheet hell

Unfortunately, spreadsheets do have certain shortcomings. Due to their inherent structure and lack of controls, it is so easy to commit simple errors like an accidental copy paste, an omission of a negative sign, an incorrect data input, or an unintentional deletion. Such shortcomings may seem harmless until your shareholders discover a multi-million discrepancy in your financial report.

And because spreadsheet errors can go undetected for a long time, they are constant targets of fraudsters. In other words, spreadsheets are high risk applications.

Solvency II Impact on Spreadsheet-based Financial and IT Systems

Regulations like Solvency II, are aimed at reducing risks to manageable levels. Basically, Solvency II is a risk-based system wherein a company?s capital requirements will depend on its measured riskiness. If companies want to avoid facing onerous capital requirements, they have to comply.

The three pillars of Solvency II have to be in place. Now, since spreadsheets (also known as User Developed Applications or UDAs) are high-risk applications with weak control features and prone to produce inaccurate reports, companies will have a lot of work to do to establish Pillars II and III.

There are at least 8 articles that impact spreadsheets in the directive. Article 82, for example, which requires firms to ensure a high level of data quality and accuracy, strikes at the very core of spreadsheets? weakness.

A whitepaper by Raymond Panko entitled ?Spreadsheets and Sarbanes-Oxley: Regulations, Risks, and Control Frameworks? mentioned that 94% of audited real world operational spreadsheets that were included in his study were found to have errors and that an average of 5.2% of all cells in the audited spreadsheets had errors.

Furthermore, many articles in the directive call for the enforcement of better documentation. This is one thing that’s very tedious and almost unrealistic to do with spreadsheets because just about anyone uses them. Besides, with different ‘versions? of the same data existing in different workstations throughout the organisation, it would be extremely difficult to keep track of them all.

Because of spreadsheets you now need an IT solution

It is clear that, with the growing number of regulations and the mounting complexity of tasks needed for compliance, spreadsheets no longer belong in this era. What you need is a server-based solution that allows for seamless collaboration, data reliability, data consistency, increased security, automatic consolidation, and all the other features that make regulation compliance more doable.

One important ingredient for achieving Solvency II compliance is sound data risk management. Sad to say, the ubiquitous spreadsheet will only expose your data to more risks.

More Spreadsheet Blogs


Spreadsheet Risks in Banks


Top 10 Disadvantages of Spreadsheets


Disadvantages of Spreadsheets – obstacles to compliance in the Healthcare Industry


How Internal Auditors can win the War against Spreadsheet Fraud


Spreadsheet Reporting – No Room in your company in an age of Business Intelligence


Still looking for a Way to Consolidate Excel Spreadsheets?


Disadvantages of Spreadsheets


Spreadsheet woes – ill equipped for an Agile Business Environment


Spreadsheet Fraud


Spreadsheet Woes – Limited features for easy adoption of a control framework


Spreadsheet woes – Burden in SOX Compliance and other Regulations


Spreadsheet Risk Issues


Server Application Solutions – Don’t let Spreadsheets hold your Business back


Why Spreadsheets can send the pillars of Solvency II crashing down

Advert-Book-UK

amazon.co.uk

Advert-Book-USA

amazon.com

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Eck Industries Sheds Fresh Light

William Eck began his business in 1948 in a 650m2 garage building. The aluminium foundry prospered, and now has an 18,500m2 factory in Manitowoc, Wisconsin employing 250 people casting a variety of casings. Like high-tech industries around the globe it needs effective illumination. After it measured its carbon footprint, it realised it needed energy efficient lighting too.

When Eck Industries began its review it had around 360 high-pressure sodium lights throughout the plant. Their operating cost was substantial. After taking independent advice from an independent agency they realised they needed to replace these with more energy-efficient fluorescent lights that consume half as much energy.

The feasibility team conducted performance tests to determine the optimum solution. After selecting enclosed, gasketed and waterproof T8 fluorescents (available in G13 bipin, single pin and recessed double contacts) they collaborated with the supplier to calculate the best combination of 4 and 6 bulb fixtures.

The fittings they chose cost $60,000 plus $10,000 installation. However a $33,000 energy rebate wrote down 47% of this immediately. They achieved further energy savings by attaching motion sensors to lights over low-traffic walkways.

The retrofit was a huge success, with an 8 month payback via a direct operating saving of $55,000 a year. Over and above enhanced illumination Eck Industries slashed 674,000 kilowatt hours off its annual lighting bill. During the 20 year design life, this equates to a total 13.5 million kilowatt hours. Other quantifiable benefits include 443 tons less carbon, 2 tons less sulphur dioxide, and 1 ton less nitrogen oxide per year.

Many companies face similar opportunities but fail to capitalise on them for a number of reasons. These may include not being aware of what is available, lacking technical insight, being short of working capital and simply being too busy to focus on them.

Eck Industries got several things right. Firstly, they consulted an independent specialist; secondly they trusted their supplier to provide honest advice, and thirdly they accepted that any significant saving is worth chasing down. Other spin-offs were safer, more attractive working conditions and an opportunity to take their foot off the carbon pedal. This is an excellent example of what is possible when you try.

If you have measured your illumination cost and are concerned about it (but are unsure what the metric means within the bigger picture) then Ecovaro offers online reports comparing it with your industry average, and highlights the cost-benefits of alternative lighting. 

Scrumming Down to Complete Projects

Everybody knows about rugby union scrums. For our purposes, perhaps it is best to view them as mini projects where the goal is to get the ball back to the fly-half no matter what the opposition does. Some scrums are set pieces where players follow planned manoeuvres. Loose / rolling scrums develop on the fly where the team responds as best according to the situation. If that sounds to you like software project management then read on, because there are more similarities?.

Isn’t Scrum Project Management the Same as Agile?

No it’s not, because Scrum is disinterested in customer liaison or project planning, although the team members may be happy to receive the accolades following success. In the same way that rugby players let somebody else decide the rules and arrange the fixtures, a software Scrum team just wants the action.

Scrum does however align closely ? dare I say interchangeably with Agile?s sprints. Stripping it of all the other stages frees the observer up to analyse it more closely in the context of a rough and tumble project, where every morning can begin with a backlog of revised requirements to back fit.

The 3 Main Phases of a Scrum

A Scrum is a single day in the life of a project, building onto what went before and setting the stage for what will happen the following day. The desired output is a block of component software that can be tested separately and inserted later. Scrumming is also a useful technique for managing any project that can be broken into discreet phases. The construction industry is a good example.

Phase 1 – Define the Backlog. A Scrum Team?s day begins with a 15 minute planning meeting where team members agree individual to-do lists called ?backlogs?.

Phase 2 – Sprint Towards the Goal. The team separates to allow each member to complete their individual lines of code. Little or no discussion is needed as this stage.

Phase 3 – Review Meeting. At the end of each working day, the team reconvenes to walk down what has been achieved, and check the interconnected functionality.

The 3 Main Phases of a Scrum ? Conclusions and Thoughts

Scrum is a great way to liberate a competent project team from unnecessary constraints that liberate creativity. The question you need to ask yourself as manager is, are you comfortable enough to watch proceedings from the side lines without rushing onto the field to grab the ball.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?