Eck Industries Sheds Fresh Light

William Eck began his business in 1948 in a 650m2 garage building. The aluminium foundry prospered, and now has an 18,500m2 factory in Manitowoc, Wisconsin employing 250 people casting a variety of casings. Like high-tech industries around the globe it needs effective illumination. After it measured its carbon footprint, it realised it needed energy efficient lighting too.

When Eck Industries began its review it had around 360 high-pressure sodium lights throughout the plant. Their operating cost was substantial. After taking independent advice from an independent agency they realised they needed to replace these with more energy-efficient fluorescent lights that consume half as much energy.

The feasibility team conducted performance tests to determine the optimum solution. After selecting enclosed, gasketed and waterproof T8 fluorescents (available in G13 bipin, single pin and recessed double contacts) they collaborated with the supplier to calculate the best combination of 4 and 6 bulb fixtures.

The fittings they chose cost $60,000 plus $10,000 installation. However a $33,000 energy rebate wrote down 47% of this immediately. They achieved further energy savings by attaching motion sensors to lights over low-traffic walkways.

The retrofit was a huge success, with an 8 month payback via a direct operating saving of $55,000 a year. Over and above enhanced illumination Eck Industries slashed 674,000 kilowatt hours off its annual lighting bill. During the 20 year design life, this equates to a total 13.5 million kilowatt hours. Other quantifiable benefits include 443 tons less carbon, 2 tons less sulphur dioxide, and 1 ton less nitrogen oxide per year.

Many companies face similar opportunities but fail to capitalise on them for a number of reasons. These may include not being aware of what is available, lacking technical insight, being short of working capital and simply being too busy to focus on them.

Eck Industries got several things right. Firstly, they consulted an independent specialist; secondly they trusted their supplier to provide honest advice, and thirdly they accepted that any significant saving is worth chasing down. Other spin-offs were safer, more attractive working conditions and an opportunity to take their foot off the carbon pedal. This is an excellent example of what is possible when you try.

If you have measured your illumination cost and are concerned about it (but are unsure what the metric means within the bigger picture) then Ecovaro offers online reports comparing it with your industry average, and highlights the cost-benefits of alternative lighting. 

Check our similar posts

Transformation to a process based organisation

Today’s global marketplace rewards nimble organisations that learn and reinvent themselves faster than their competition. Employees at all levels of these organisations see themselves as members of teams responsible for specific business processes, with performance measures tied to the success of the enterprise. As team members, they are “owners” of the process (or processes) to which they are assigned. They are responsible for both the day to day functioning of their process(s), and also for continuously seeking sustainable process improvements.

Transforming a traditionally designed “top down control” enterprise to a process-based organisation built around empowered teams actively engaged in business process re-engineering (BPR) has proven more difficult than many corporate leaders have expected. Poorly planned transformation efforts have resulted in both serious impacts to the bottom line, and even more serious damage to the organisation’s fabric of trust and confidence in leadership.

Tomislav Hernaus, in a publication titled “Generic Process Transformation Model: Transition to Process-based Organisation” has presented an overview of existing approaches to organisational transformation. From the sources reviewed, Heraus has synthesised a set of steps that collectively represent a framework for planning a successful organisational change effort. Key elements identified by Hernaus include:

Strategic Analysis:

The essential first step in any transformation effort must be development of a clear and practical vision of a future organisation that will be able to profitably compete under anticipated market conditions. That vision must be expected to flex and adjust as understanding of future market conditions change, but it must always be stated in terms that all organisational members can understand.

Identifying Core Business Processes:

With the strategic vision for the organisation in mind, the next step is to define the core business processes necessary for the future organisation to function. These processes may exist across the legacy organisation’s organisational structures.

Designing around Core Processes:

The next step is development of a schematic representation of the “end state” company, organised around the Core Business Processes defined in the previous step.

Transitional Organisational Forms/ Developing Support Systems:

In his transformation model, Hernaus recognises that information management systems designed for the legacy organisation may not be able to meet the needs of the process management teams in the new organisation. Interim management structures (that can function with currently available IT system outputs) may be required to allow IT professionals time to redesign the organisation’s information management system to be flexible enough to meet changing team needs.

Creating Awareness, Understanding, and Acceptance of the Process-based Organisation:

Starting immediately after the completion of the Strategic Analysis process described above, management must devote sufficient resources to assure that all organisation members, especially key managers, have a full understanding of how a process-based organisation functions. In addition, data based process management skills need to be provided to future process team members. It is not enough to schedule communication and training activities, and check them off the list as they are completed. It is critical that management set behavioural criteria for communication and training efforts that allow objective evaluation of the results of these efforts. Management must commit to continuing essential communication and training efforts until success criteria are achieved. During this effort, it may be determined that some members of the organisation are unlikely to ever accept the new roles they will be required to assume in a process-based organization. Replacement of these individuals should be seen as both an organisational necessity and a kindness to the employees affected.

Implementation of Process Teams:

After the completion of required training AND the completion of required IT system changes, process teams can be formally rolled out in a planned sequence. Providing new teams with part time support by qualified facilitators during the firsts weeks after start-up can pay valuable long term dividends.

Team Skill Development and Continuous Process Improvement:

Providing resources for on-going skill development and for providing timely and meaningful recognition of process team successes are two keys for success in a process-based organisation. Qualified individuals with responsibility for providing training and recognition must be clearly identified and provided with sufficient budgetary resources.

The Hernaus model for transformation to a process based organisation is both well thought out and clear. His paper provides an ample resource of references for further study.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Uncover hidden opportunities with energy data analytics

What springs to mind when you hear the words energy data analytics? To me, I feel like energy data analytics is not my thing. Energy data analytics, however, is of great importance to any organisation or business that wants to run more efficiently, reduce costs, and increase productivity. Energy efficiency is one of the best ways to accomplish these goals.

Energy efficiency is not about investment in expensive equipment and internal reorganization. Enormous energy saving opportunities is hidden in already existing energy data. Given that nowadays, energy data can be recorded from almost any device, a lot of data is captured regularly and therefore a lot of data is readily available.

Organisations can use this data to convert their buildings’ operations from being a cost centre to a revenue centre through reduction of energy-related spending which has a significant impact on the profitability of many businesses. All this is possible through analysis and interpretation of data to predict future events with greater accuracy. Energy data analytics therefore is about using very detailed data for further analysis, and is as a consequence, a crucial aspect of any data-driven energy management plan.

The application of Data and IT could drive significant cost savings in company-owned buildings and vehicle fleets. Virtual energy audits can be performed by combining energy meter data with other basic data about a building e.g. location, to analyse and identify potential energy savings opportunities. Investment in energy dashboards can further enable companies to have an ongoing look at where energy is being consumed in their buildings, and thus predict ways to reduce usage, not to mention that energy data analytics unlock savings opportunities and help companies to understand their everyday practices and operating requirements in a much more comprehensive manner.

Using energy data analytics can enable an organisation to: determine discrepancies between baseline and actual energy data; benchmark and compare previous performance with actual energy usage. Energy data analytics also help businesses and organisations determine whether or not their Building Management System (BMS) is operating efficiently and hitting the targeted energy usage goals. They can then use this data to investigate areas for improvement or energy efficient upgrades. When energy data analytics are closely monitored, companies tend to operate more efficiently and with better control over relevant BMS data.

Spend more to reduce costs?

It is becoming increasingly important to not to analyse energy consumption for all utility types, be it electricity, gas, water, heat, renewables, oil etc. The bottom line is both operational efficiency and utility costs monitoring. In the long run, these are management strategies designed to drive energy costs downwards as a continuous improvement cycle and as a measure of reducing carbon emissions.

It is also getting increasingly easier for organisations reduce energy use and achieve this goal using technology without having to “remember” to do it yourself. Organisations can never go wrong by investing in energy management software. There are varied software options to choose from depending on the organisational objective.
Some of the energy management objectives that organisations may need to meet are:

? Establishing baseline energy use

? Carrying out Energy audits

? Monitoring and measuring energy performance against the energy policies of an organisation and objectives

? Achieving energy certification
Energy management software?s come in handy when an organization wishes to achieve either of the above objectives.

Use of energy management software?s also assists organisations in measurement and verification of energy consumption as well as Monitoring and Targeting. Measurement and verification is where a company quantifies energy consumption beforehand (baseline energy use) and after energy consumption measurements are implemented in order to verify and report on the level of savings actually achieved.

Organisations that wish to verify the energy savings achieved by building retrofits can use energy management software?s. This is an important objective for companies that wish to either satisfy internal financial accounting and reporting requirements, or to meet the terms of third-party contracts for project implementation and management. Monitoring and targeting is also made easier by use of software. This is critical as a management technique, regardless of whether an organisation has specific facility retrofits in order to keep operations efficient and to monitor utility costs.
Overall, an investment in energy management software, is worthwhile in the achievement of management strategies designed to drive energy costs downwards as a continuous improvement cycle.

Ready to work with Denizon?