ISO in Energy management

Every industry has its own set levels of quality that are considered acceptable or desirable. Energy performance like any other field is governed by some set standards. These differ across regions but international standards do exist.

ISO 50001 is the international energy standard applicable to both large and small organisations irrespective of geographical, cultural or social conditions. It outlines the best energy management practices that are considered to be the best by specifying that an organisation must integrate an energy management system and institute an energy policy, objectives, targets, and action plans taking into account legal requirements and information related to significant energy use. The energy standard is applicable to organisations.

What’s the importance of attaining energy certification?

ISO certification in any industry is a demonstration of quality or that a service or product meets the expected service standards. In energy management, ISO certification is a demonstration that an organisation or company has implemented sustainable energy management systems, completed a baseline of energy use and, is committed to continuously improve its energy performance. In addition, ISO certification assists organisations in the following ways:

? Organisations are able to optimise the existing energy-consuming assets

? Offers guidance on bench-marking, measuring, documenting, and reporting energy intensity improvements and their projected impact on reducing GHG emissions

? Creates transparency and facilitates communication on the management of energy resources

? Promotes energy management best practices and reinforces good energy management behaviours

? Assists facilities in evaluating and prioritising the implementation of new energy-efficient technologies

? Provides a framework for promoting energy efficiency throughout the supply chain

? Facilitates energy management improvements in the context of GHG emission reduction projects: The reduction of carbon emissions means therefore an organisation is able to meet government carbon reduction targets by demonstrating environmental credentials. The accruing benefits are many, ranging from increased investor confidence to more tender opportunities

Energy management software plays a vital role in helping organisations comply with energy standards through improved performance across the various functions in an organisation.

Check our similar posts

Why Spreadsheets can send the Pillars of Solvency II Crashing Down


Solvency II is now fast approaching and while it may provide added protection to policy holders, its impact on the insurance industry is not all a bed of roses. Expect insurance companies to restructure, increase manpower, and raise spending on actuarial operations and risk management initiatives. Those that cannot, will have to go. But what have spreadsheets got to do with all these?

Well, spreadsheets aren’t really the main casts in this blockbuster of a regulatory exercise but they certainly have a significant supporting role to play. Pillar I of Solvency II, which calls for improved supervision on internal control, risk management, and corporate governance, and Pillar II, which tackles supervisory reporting and public disclosure of financial and other relevant information, both affect systems that have high-reliance on spreadsheets.

A little background about spreadsheets might help.

Who needs an IT solution when you can have spreadsheets?

Everyone in any organisation just love spreadsheets; from the office clerk to the CEO. Because they’re so easy to use (not to mention they’re a staple in office computers), people employ them for processing numbers and as an all-around tool for planning, forecasting, reporting, complex modelling, market data analysis, and so on. They make such tasks faster and easier. Really?

You probably haven’t heard of spreadsheet hell

Unfortunately, spreadsheets do have certain shortcomings. Due to their inherent structure and lack of controls, it is so easy to commit simple errors like an accidental copy paste, an omission of a negative sign, an incorrect data input, or an unintentional deletion. Such shortcomings may seem harmless until your shareholders discover a multi-million discrepancy in your financial report.

And because spreadsheet errors can go undetected for a long time, they are constant targets of fraudsters. In other words, spreadsheets are high risk applications.

Solvency II Impact on Spreadsheet-based Financial and IT Systems

Regulations like Solvency II, are aimed at reducing risks to manageable levels. Basically, Solvency II is a risk-based system wherein a company?s capital requirements will depend on its measured riskiness. If companies want to avoid facing onerous capital requirements, they have to comply.

The three pillars of Solvency II have to be in place. Now, since spreadsheets (also known as User Developed Applications or UDAs) are high-risk applications with weak control features and prone to produce inaccurate reports, companies will have a lot of work to do to establish Pillars II and III.

There are at least 8 articles that impact spreadsheets in the directive. Article 82, for example, which requires firms to ensure a high level of data quality and accuracy, strikes at the very core of spreadsheets? weakness.

A whitepaper by Raymond Panko entitled ?Spreadsheets and Sarbanes-Oxley: Regulations, Risks, and Control Frameworks? mentioned that 94% of audited real world operational spreadsheets that were included in his study were found to have errors and that an average of 5.2% of all cells in the audited spreadsheets had errors.

Furthermore, many articles in the directive call for the enforcement of better documentation. This is one thing that’s very tedious and almost unrealistic to do with spreadsheets because just about anyone uses them. Besides, with different ‘versions? of the same data existing in different workstations throughout the organisation, it would be extremely difficult to keep track of them all.

Because of spreadsheets you now need an IT solution

It is clear that, with the growing number of regulations and the mounting complexity of tasks needed for compliance, spreadsheets no longer belong in this era. What you need is a server-based solution that allows for seamless collaboration, data reliability, data consistency, increased security, automatic consolidation, and all the other features that make regulation compliance more doable.

One important ingredient for achieving Solvency II compliance is sound data risk management. Sad to say, the ubiquitous spreadsheet will only expose your data to more risks.

More Spreadsheet Blogs


Spreadsheet Risks in Banks


Top 10 Disadvantages of Spreadsheets


Disadvantages of Spreadsheets – obstacles to compliance in the Healthcare Industry


How Internal Auditors can win the War against Spreadsheet Fraud


Spreadsheet Reporting – No Room in your company in an age of Business Intelligence


Still looking for a Way to Consolidate Excel Spreadsheets?


Disadvantages of Spreadsheets


Spreadsheet woes – ill equipped for an Agile Business Environment


Spreadsheet Fraud


Spreadsheet Woes – Limited features for easy adoption of a control framework


Spreadsheet woes – Burden in SOX Compliance and other Regulations


Spreadsheet Risk Issues


Server Application Solutions – Don’t let Spreadsheets hold your Business back


Why Spreadsheets can send the pillars of Solvency II crashing down

Advert-Book-UK

amazon.co.uk

Advert-Book-USA

amazon.com

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How an EMS Can Cut Your Carbon Emissions

Your business carbon footprint is directly tied to the efficiency of its energy consumption. From the equipment used in industries, lighting and air conditioning in offices, shopping malls and other commercial buildings, the load used by everyday machines like the coffee makers in the employee breakroom, to hot water boilers in apartment complexes, how much do your processes affect the environment? Standards like the ISO 14001:2015 are being implemented to enable businesses to reduce their impact on the environment, from optimising their energy usage, minimising waste, turning to renewable power sources, all through to preventing pollution and complying with their specific regulatory requirements. How do you handle the volume of data that needs to be obtained and assessed?

Energy management systems come in to enable you to analyse your consumption, identify factors affecting your total energy use – from temperature and humidity conditions, to equipment that is causing spikes, and observe your usage patterns. That way, you can put in measures to minimise wastage while increasing your operational efficiency, reduce your carbon emissions and track your progress all the way. Here, we’ll break down how this is achieved. 

Going Green With An Energy Management System

This is a holistic approach aimed at minimising wastage and optimising energy usage. It includes:

Auditing your energy consumption

The first step is really quantifying how much energy you use, which systems are causing unnecessary load, all through to where there are inefficiencies in the facility. Which equipment has the largest impact on your bill? An energy management system allows you to view it all from one dashboard, such as with the ecoVaro EMS that takes you down to the sub-meter level.

Here, you get real-time data that is collected by the ecoVaro loggers – from electricity use, gas, water, temperature, solar power, humidity, air pressure – the readings can all be monitored. This is done 24/7, and the consumption feeds are recorded. Moreover, ecoVaro pulse data is collected every 15 minutes – which is particularly important when it comes to analysing trends over a time period, be it daily, weekly or monthly. 

Data is only useful if it can be properly analysed, right? So instead of just bombarding you with spreadsheets of numbers, the EMS displays the records into graphs and charts that are easy to comprehend – all from the same interactive interface. So, whether you’re the energy manager in the facility, or you want reports that can be shared with the CFO, owners of the business, or even staff themselves to enable them to understand the energy saving policies that you will put in place – you will be able to carry this out. 

ecoVaro gives you different ways to analyse the data from the readings that have been recommended. For instance, the heat mapping from the interface allows you to see the building’s energy use during different periods at a glance. The site-by-site analysis in particular enables the building or energy manager to assess each individual premises, from checking which block in the school is causing the energy bills to surge, the facility whose performance is falling behind, all through to the office building with the highest carbon footprint. In fact, the carbon and sustainability reports from ecoVaro EMS enables you to see the impact that your operations have. You even get to compare tariffs from the different energy suppliers, that way you can go with the option that is most suited to your situation.

Setting a baseline for your operations

This is essentially a “before/after checkpoint” that you will use to compare the effectiveness of subsequent measures that you will undertake. After making modifications to the systems in your business, you will want a clear picture of whether the new measures are actually benefiting your operations and optimising your energy efficiency, or whether they are deteriorating the performance further. The energy baseline will be critical in analysing your progress. 

Reports like the CUSUM (cumulative sum) charts on ecoVaro show you the energy performance, be it of a boiler in a factory, office building, or chain of hotels – over a set period of time. You can then compare this to the baseline, which will show you if the changes you will implement will make you savings. The heatmaps also come in handy here, showing you the energy consumption at each meter, whether it is low, medium or high compared to the baseline that has been set. The heatmaps give a quick visual to analyse resource usage.  

Creating energy targets

After understanding your energy consumption and seeing how it impacts your business, next is mapping out short- and long-term goals that you want to attain to optimise your usage and reduce your carbon footprint. 

For instance, short-term targets can include the likes of decreasing the night-time lighting load, and adjusting HVAC uptime depending on the level of activity in your business premises for the different hours of the day. 

For the long-term targets, these include setting a specific percentage average kWh reduction for the different industrial sites or buildings under your management; lowering the demand kW throughout the building by a specific range year-on-year; as well as the percentage with which you want the carbon emissions decreased annually. 

Cost efficiency also factors in. For instance, entering your current tariffs into the conversion factoring dashboard on ecoVaro will show you how your consumption translates to the bills that you receive – and even shows you what you stand to save by negotiating for new energy contracts with your utility firm.

Identifying initiatives and implementing energy saving programs

These are geared towards improving your energy efficiency and reducing your carbon footprint. They vary from one industry to the next. For instance, these can include:

Getting motion/occupancy detectors and automatic dimmers installed in the facility

These are lighting controls that enable you to save money and energy by automatically turning the lights off when they are not required (people have left the room), and reducing the light levels for those cases where full-on brightness is not needed. For instance, the dimmer controls enable variable indoor lighting, reducing the wattage and output when dimming the lightbulbs, saving energy in the process. These can be manual, or operated with sensors or timers. 

Motion sensors on the other hand will automatically turn on the lights after they detect motion, then after a short while turn them off – they are typically used for utility and outdoor security lighting. There are also occupancy sensors used in rooms, which turn on the lights when they detect indoor activity, then turn them off or reduce the light output when the particular space is unoccupied. 

Switching to energy-efficient light fixtures such as CFL or LED bulbs

Lighting costs are a major contributor to the energy bills being footed by the business. What kind of systems do you have set up?

Incandescent bulbs are rapidly being phased out due to their inefficiencies. They work by a wire tungsten filament getting heated until it glows – a process that sees almost 90% of its energy being released as heat, instead of light. In addition, with an average lifespan of just 1,500 hours, there is the need for better alternatives – and they have already been around for over a decade: CFL and LED bulbs, which save on energy and have far less carbon emissions. 

Compact fluorescent light bulbs (CFLs) light up when an electric current going through a tube with argon and trace mercury gases generates ultraviolet light, stimulating the fluorescent coating that’s on the inside of the tube, which in turn produces light. As such, a 15-watt CFL will have about the same light output as a 60-watt incandescent bulb. This makes them approximately 4 times more efficient compared to the incandescent bulbs, with a lifespan of 10,000-15,000 hours. This translates into fewer replacements and greater energy savings. However, there are still concerns about the mercury that is in the CFLs, though it is still in small quantities – basically smaller than the tip of your pencil. In addition, the CFLS aren’t; dimmable. They are usually used as a replacement for incandescent bulbs before completely switching to the more efficient LEDs.

Light-emitting diode bulbs (LEDs) Take things a notch higher. Here, electrons moving through a semiconductor emit the light, and you can get the LEDs for visible light, ultra-violet, and infrared spectrums. Here, the lifespan is 25,000–35,000 hours, which is more than double that of CFLs, and leagues beyond the standard incandescent bulb. Moreover, with a 16.5W LED bulb you’ll be getting the same lighting as a 20W CFL, or a 75W incandescent bulb. 

You will notice that when you touch LEDs, they feel cool, and this is because less energy is getting converted into heat. With the energy efficient bulbs, you won’t have to run your AC harder during those hot months, further adding to your cost savings. You can be able to see such consumption trends over the months through the energy management system, getting to the root cause of the problem. For instance, seeing the changing trends in the AC energy consumption over different weeks will enable you to assess what is causing it to be pushed harder, and address the root cause of the problem. 

Acquiring energy-efficient office equipment

This is broad, with the changes being made here depending on your particular niche. Take printers for instance. Simply going for printers with sleep and automatic shut-off modes will ensure that the units are not consuming energy when they are not in use. The same case applies to copier machines. Energy saving surge protectors on the other hand are beneficial for allowing you to “unplug” multiple devices that use standby power even when switched off – what’s usually called “vampire power” or “phantom energy“. 

The need for energy savings cuts across the board, from the computers and monitors used, to the coffee makers and kettles. For instance, working with an electric kettle to heat water for tea beats using a microwave or stove. Go further by opting for a kettle that allows you to set the particular temperature you want for the water – since you don’t really need the water for tea to be boiling hot for the tea to properly steep. Taking such steps further contributes to your business’ efforts to go green and reduce your carbon footprint. 

Turning to renewable energy sources

Switching to renewable sources to power your operations will simultaneously reduce your energy bills and cut your carbon emissions. From solar panels to wind turbines and the like, they are cleaner sources of energy, and the installations that you go with will depend on your kind of business. Moreover, this will protect you from the fluctuations in energy prices, since the bills are affected by the availability of fuel, electricity demand, costs that go into generating and distributing it – all of which end up hitting your business in the long run. On the other hand, going off the grid with your own supply of power protects you from this. In fact, if you end up producing surplus energy, you can sell it back to the grid, earning your business extra revenue. 

Sure, the upfront costs of setting up the systems will take a sizable chunk out of your budget, but the savings allow you to recoup the costs over time. In addition, there will be savings from the incentives being provided by the government, such as tax rebates and grants. These are the likes of the Solar PV Grant from SEAI (Sustainable Energy Authority of Ireland) which is at €900 per kWp, capped at €2400 for each business. Funding is available for homes, community programs and commercial buildings such as  Collinstown Park School that was able to slash their lighting costs by a whopping 90% after securing 50% of the funding for their energy upgrade project from SEAI. The ecoVaro EMS comes with support for solar power installations in its firmware, that way you can continue assessing the changes that your solar power system will bring to your overall energy usage.

Spread awareness

You should also carry out energy conservation training for your staff. The reports generated by the EMS will make it easy for them to get a picture of their energy consumption trends, and the effects that it has on both the performance of the company, and the carbon footprint as a whole. It also gives them more awareness of the impact that they each have at an individual level. 

Assessing Key Performance Indicators

The energy analytics tools from the EMS will show you whether you are actually meeting your goals. Since it works with the different metered connections, from getting electricity and temperature readings, checking radiation levels, humidity data all through to gas meters, you will be able to assess the progress that your business is making across the board. 

For ecoVaro in particular, the performance of your systems can be seen through reports like Consumption Charts – from the different offices, tenants and equipment energy usage, peak -and off-peak data, as well as Regression Charts that allow you to compare building’s actual energy consumption to its expected performance, and how they are affected by variables such as temperature. 

With the site-by-site data and the monitoring being down to the sub-meter level, you will be able to identify an issue when it crops up and narrow it down to the specific instant and location where it occurred. This enables you to address the problem quicker.   

Conducting a compliance audit

A comprehensive audit can then be undertaken to ensure that your company meets internationally-recognized standards that have been stipulated regarding implementing energy management systems and enhancing the energy efficiency of your operations. The compliance audits are carried out by certified auditors.

Through the EMS, you are able to position your business appropriately to meet the standards for your particular niche, measuring and observing the performance of energy-saving projects that have been implemented. This extends to acquiring and presenting data that will be used to show the business’s compliance to industry regulations and obtain the relevant certification. You are able to report on your carbon footprint, and verify it. This information can also be disseminated amongst your employees and customers, raising awareness about your business green initiatives, boosting your brand in the process.

What Is Technical Debt? A Complete Guide

You buy the latest iPhone on credit. Turn to fast car loan services to get yourself those wheels you’ve been eyeing for a while. Take out a mortgage to realise your dream of being a homeowner. Regardless of the motive, the common denominator is going into financial debt to achieve something today, and pay it off in future, with interest. The final cost will be higher than the loan value that you took out in the first place. However, debt is not limited to the financial world.

Technical Debt Definition

Technical debt – which is also referred to as code debt, design debt or tech debt – is the result of the development team taking shortcuts in the code to release a product today, which will need to be fixed later on. The quality of the code takes a backseat to issues like market forces, such as when there’s pressure to get a product out there to beat a deadline, front-run the competition, or even calm jittery consumers. Creating perfect code would take time, so the team opts for a compromised version, which they will come back later to resolve. It’s basically using a speedy temporary fix instead of waiting for a more comprehensive solution whose development would be slower.

How rampant is it? 25% of the development time in large software organisations is actually spent dealing with tech debt, according to a multiple case study of 15 organizations. “Large” here means organizations with over 250 employees. It is estimated that global technical debt will cost companies $4 trillion by 2024.

Is there interest on technical debt?

When you take out a mortgage or service a car loan, the longer that it takes to clear it the higher the interest will be. A similar case applies to technical debt. In the rush to release the software, it comes with problems like bugs in the code, incompatibility with some applications that would need it, absent documentation, and other issues that pop up over time. This will affect the usability of the product, slow down operations – and even grind systems to a halt, costing your business. Here’s the catch: just like the financial loan, the longer that one takes before resolving the issues with rushed software, the greater the problems will pile up, and more it will take to rectify and implement changes. This additional rework that will be required in future is the interest on the technical debt.

Reasons For Getting Into Technical Debt

In the financial world, there are good and bad reasons for getting into debt. Taking a loan to boost your business cashflow or buy that piece of land where you will build your home – these are understandable. Buying an expensive umbrella on credit because ‘it will go with your outfit‘ won’t win you an award for prudent financial management. This also applies to technical debt.

There are situations where product delivery takes precedence over having completely clean code, such as for start-ups that need their operations to keep running for the brand to remain relevant, a fintech app that consumers rely on daily, or situations where user feedback is needed for modifications to be made to the software early. On the other hand, incurring technical debt because the design team chooses to focus on other products that are more interesting, thus neglecting the software and only releasing a “just-usable” version will be a bad reason.

Some of the common reasons for technical debt include:

  • Inadequate project definition at the start – Where failing to accurately define product requirements up-front leads to software development that will need to be reworked later
  • Business pressure – Here the business is under pressure to release a product, such as an app or upgrade quickly before the required changes to the code are completed.
  • Lacking a test suite – Without the environment to exhaustively check for bugs and apply fixes before the public release of a product, more resources will be required later to resolve them as they arise.
  • Poor collaboration – From inadequate communication amongst the different product development teams and across the business hierarchy, to junior developers not being mentored properly, these will contribute to technical debt with the products that are released.
  • Lack of documentation – Have you launched code without its supporting documentation? This is a debt that will need to be fulfilled.
  • Parallel development – This is seen when working on different sections of a product in isolation which will, later on, need to be merged into a single source. The greater the extent of modification on an individual branch – especially when it affects its compatibility with the rest of the code, the higher the technical debt.
  • Skipping industrial standards – If you fail to adhere to industry-standard features and technologies when developing the product, there will be technical debt because you will eventually need to rework the product to align with them for it to continue being relevant.
  • Last-minute product changes – Incorporating changes that hadn’t been planned for just before its release will affect the future development of the product due to the checks, documentation and modifications that will be required later on

Types of Technical Debt

There are various types of technical debt, and this will largely depend on how you look at it.

  • Intentional technical debt – which is the debt that is consciously taken on as a strategy in the business operations.
  • Unintentional technical debt – where the debt is non-strategic, usually the consequences of a poor job being done.

This is further expounded in the Technical Debt Quadrant” put forth by Martin Fowler, which attempts to categorise it based on the context and intent:

Technical Debt Quadrant

Source: MartinFowler.com

Final thoughts

Technical debt is common, and not inherently bad. Just like financial debt, it will depend on the purpose that it has been taken up, and plans to clear it. Start-ups battling with pressure to launch their products and get ahead, software companies that have cut-throat competition to deliver fast – development teams usually find themselves having to take on technical debt instead of waiting to launch the products later. In fact, nearly all of the software products in use today have some sort of technical debt.

But no one likes being in debt. Actually, technical staff often find themselves clashing with business executives as they try to emphasise the implications involved when pushing for product launch before the code is completely ready. From a business perspective, it’s all about weighing the trade-offs, when factoring in aspects such as the aspects market situation, competition and consumer needs. So, is technical debt good or bad? It will depend on the context. Look at it this way: just like financial debt, it is not a problem as long as it is manageable. When you exceed your limits and allow the debt to spiral out of control, it can grind your operations to a halt, with the ripple effects cascading through your business.

 

Ready to work with Denizon?