8 Reasons why you Need to Undertake Technical and Application Assessments

Are your information assets enabling you to operate more cost-effectively or are they just drawing in more risks than you are actually aware of? Obviously, you now need to get a better picture of those assets to see if your IT investments are giving you the benefits you were expecting and to help you identify areas where improvements should be made.

The best way to get the answers to those questions is through technical and application assessments. In this post, we?ll identify 8 good reasons why it is now imperative to undertake such assessments.

1. Address known issues – Perhaps the most common reason that drives companies to undertake a technology/application assessment is to identify the causes of existing issues such as those related to data accessibility, hardware and software scalability, and performance.

2. Cut down liabilities and risks – Unless you know what and where the risks are, there is no way you can implement an appropriate risk mitigation strategy. A technology and application assessment will enable you to thoroughly test and examine your information systems to see where your business-critical areas and points of failure are and subsequently allow you to act on them.

3. Discover emerging risks – Some risks may not yet be as threatening as others. But it would certainly be reassuring to be aware if any exist. That way, you can either nip them in the bud or keep them monitored.

4. Comply with regulations – Regulations like SOX require you to establish adequate internal controls to achieve compliance. Other regulations call for the protection of personally identifiable information. Assessments will help you pinpoint processes that lack controls, identify data that need protection, and areas that don’t meet regulatory requirements. This will enable you to act accordingly and keep your company away from tedious, time-consuming and costly sanctions.

5. Enhance performance – Poor performance is not always caused by an ageing hardware or an overloaded infrastructure. Sometimes, the culprits are: unsuitable configuration settings, inappropriate security policies, or misplaced business logic. A well-executed assessment can provide enough information that would lead to a more cost-effective action plan and help you avoid an expensive but useless purchase.

6. Improve interoperability – Disparate technologies working completely separate from each other may be preventing you from realising the maximum potential of your entire IT ecosystem. If you can examine your IT systems, you may be able to discover ways to make them interoperate and in turn harness untapped capabilities of already existing assets.

7. Ensure alignment of IT with business goals – An important factor in achieving IT governance is the proper alignment of IT with business goals. IT processes need to be assessed regularly to ensure that this alignment continues to exist. If it does not, then necessary adjustments can be made.

8. Provide assurance to customers and investors – Escalating cases of data breaches and identity theft are making customers and investors more conscious with a company?s capability of preserving the confidentiality of sensitive information. By conducting regular assessments, you can show your customers and investors concrete steps for keeping sensitive information confidential.

Check our similar posts

Scrumming Down to Complete Projects

Everybody knows about rugby union scrums. For our purposes, perhaps it is best to view them as mini projects where the goal is to get the ball back to the fly-half no matter what the opposition does. Some scrums are set pieces where players follow planned manoeuvres. Loose / rolling scrums develop on the fly where the team responds as best according to the situation. If that sounds to you like software project management then read on, because there are more similarities?.

Isn’t Scrum Project Management the Same as Agile?

No it’s not, because Scrum is disinterested in customer liaison or project planning, although the team members may be happy to receive the accolades following success. In the same way that rugby players let somebody else decide the rules and arrange the fixtures, a software Scrum team just wants the action.

Scrum does however align closely ? dare I say interchangeably with Agile?s sprints. Stripping it of all the other stages frees the observer up to analyse it more closely in the context of a rough and tumble project, where every morning can begin with a backlog of revised requirements to back fit.

The 3 Main Phases of a Scrum

A Scrum is a single day in the life of a project, building onto what went before and setting the stage for what will happen the following day. The desired output is a block of component software that can be tested separately and inserted later. Scrumming is also a useful technique for managing any project that can be broken into discreet phases. The construction industry is a good example.

Phase 1 – Define the Backlog. A Scrum Team?s day begins with a 15 minute planning meeting where team members agree individual to-do lists called ?backlogs?.

Phase 2 – Sprint Towards the Goal. The team separates to allow each member to complete their individual lines of code. Little or no discussion is needed as this stage.

Phase 3 – Review Meeting. At the end of each working day, the team reconvenes to walk down what has been achieved, and check the interconnected functionality.

The 3 Main Phases of a Scrum ? Conclusions and Thoughts

Scrum is a great way to liberate a competent project team from unnecessary constraints that liberate creativity. The question you need to ask yourself as manager is, are you comfortable enough to watch proceedings from the side lines without rushing onto the field to grab the ball.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

The Future is Smarter with a Smart Meter

Traditionally, electricity and water meter consumption was measured via analogue meters. Utility billing was based on actual consumption units obtained from the meter by meter readers. This entailed physical visits to the metering point. Lots of challenges came with meter reading; talk of customers feeling their privacy is intruded, meter readers encountering hostile customers, dogs, closed gates. The result was estimated bills that were most often than not very high.

Smart meters can be dubbed as the ?next generation? type of meters. Smart meters send wireless electronic meter readings to one?s energy supplier automatically. There are both gas smart meters and electricity smart meters. Smart meters come with in-home displays, which give someone real-time feedback on their energy usage and the associated cost.

Smart meters communicate meter readings directly to utility companies therefore no one has to come to your home to read your meter; and neither are you required to submit meter readings yourself. This not only reduces costs, but leads to more accurate electricity bills practically eliminating estimated bills. Smart meters signal the end of estimated bills, and the end of overpaying or underpaying for energy.

Whereas a smart meter in itself does not save you money, the add-ons (in-home displays) that come with the smart meters and which give someone real-time feedback on their energy usage helps them to reduce the unnecessary energy use and this ultimately leads to better oversight into how to lower utility bills hence better management of one?s energy use.

In summary, a smart meter is a technology that enables energy consumers to see their energy as they use it, a technology where energy is displayed as it is being used and wireless ratings sent. Adoption of smart meters would mean the end of estimated energy bills.

Smart meters are also promising a smart future where all energy consuming devices can be connected to the internet and centrally controlled using computers or smartphones. This means one is able to switch off lights and other energy consuming devices from a central point, hence make savings and this will enable them to have greater control of their energy use, hence more comfort, convenience and life will be cheaper for all. This is the smarter future we are all looking forward to.

Ready to work with Denizon?