Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Check our similar posts

User-Friendly RASCI Accountability Matrices

Right now, you’re probably thinking that’s a statement of opposites. Something dreamed up by a consultant to impress, or just to fill a blog page. But wait. What if I taught you to create order in procedural chaos in five minutes flat? ?Would you be interested then?

The first step is to create a story line ?

Let’s imagine five friends decide to row a boat across a river to an island. Mary is in charge and responsible for steering in the right direction. John on the other hand is going to do the rowing, while Sue who once watched a rowing competition will be on hand to give advice. James will sit up front so he can tell Mary when they have arrived. Finally Kevin is going to have a snooze but wants James to wake him up just before they reach the island.

That’s kind of hard to follow, isn’t it ?

Let’s see if we can make some sense of it with a basic RASCI diagram ?

Responsibility Matrix: Rowing to the Island
ActivityResponsibleAccountableSupportiveConsultedInformed
PersonJohnMarySueJamesKevin
RoleOarsmanCaptainConsultantNavigatorSleeper

?

Now let’s add a simple timeline ?

Responsibility Matrix: Rowing to the Island
?SueJohnMaryJamesKevin
Gives Direction??A??
Rows the Boat?R???
Provides AdviceS????
Announces Arrival??AC?
Surfaces From Sleep???CI
Ties Boat to Tree??A??

?

Things are more complicated in reality ?

Quite correct. Although if I had jumped in at the detail end I might have lost you. Here?s a more serious example.

rasci

?

There?s absolutely no necessity for you so examine the diagram in any detail, other to note the method is even more valuable in large, corporate environments. This one is actually a RACI diagram because there are no supportive roles (which is the way the system was originally configured).

Other varieties you may come across include PACSI (perform, accountable, control, suggest, inform), and RACI-VS that adds verifier and signatory to the original mix. There are several more you can look at Wikipedia if you like.

ESOS Guide for UK Manufacturers Available

The Engineering Employers’ Federation (EEF) is the UK’s largest sectoral structure. Its goal is to promote the interests of manufacturing, engineering and technology-based businesses in order to enhance their competitiveness.

EEF has positioned itself in London and Brussels in order to be in a position to lobby at EU and Westminster level. Part of its role is helping its members adapt to change and capitalise on it. When it discovered that a third of UK manufacturers must comply with ESOS (and 49% had not even heard of it) EEF decided it was time to publish a handbook for its members.

According to EEF’s head of climate and environment policy Gareth Stace, For the many manufacturers that have already taken significant steps to improve energy efficiency, ESOS can be viewed as a ?stock taking exercise?, ensuring that momentum is maintained and new measures are highlighted and taken when possible?.

He goes on to add that others that have not begun the process should view it as an ‘impetus’ to go head down and find the most cost-effective ways to slash energy costs. Ecovaro adds that they would also have the opportunity to reduce carbon emissions almost as a by-product.

Firms with more than 250 employees, over 250 million revenue or both must comply with ESOS across all UK sectors. In simplest terms, they must have conducted an energy audit by 5th December 2015, and logged their energy saving plan with the Environmental Agency that is Britain?s sustainability watchdog.

The Department of Energy & Climate Change (DEEC) that oversees it believes that large UK businesses are wasting ?2.8 billion a year on electricity they do not need. Clearly it makes sense to focus on larger targets; however EcoVaro believes those halfway to the threshold should voluntarily comply if cutting their energy bills by 25% sounds appealing.

We are able to assist with interpreting their energy audits. These are often a matter of installing sub-meters at distribution points, and reading these for a few representative months to establish a trend. Meters are inexpensive compared to electricity costs, and maintenance teams can install them during maintenance shutdowns.

Ecovaro helps these firms process the data into manageable summaries using cloud-based technology. This is on a pay-when-used basis, and hence considerably cheaper than acquiring the software, or appointing a consultant.

Understanding Carbon Emissions

Carbon emission is one of the hottest issues in the world of energy and environment today. While it is supposedly an essential component of the ecosystem, it has already become a large contributing factor to climate change. Carbon emission might be good but abuse of this natural process has made it harmful to people across the globe.

This series of articles aims to help people understand the intricacies of carbon emission and what society can do to efficiently manage this natural occurrence.

Natural Carbon Cycle

Two important elements in the carbon cycle are carbon, which is present in every living thing all over the world; and oxygen, which is found in the air that people breathe. When these two bond together, they create a colourless and odourless greenhouse gas known as carbon dioxide, which is then crucial to trapping infrared radiation heat in the atmosphere and also for weathering rocks.

Carbon is not only found in the atmosphere of the earth. It is also an element found in oceans, plants, coal deposits, oil and natural gas from deep down the earth?s core. Through the carbon cycle, carbon moves naturally from one portion of the earth to another. Looking at this scenario, one can see that the natural carbon cycle is a healthy way to release carbon dioxide into the air in order to be absorbed again by trees and plants.

Altered Carbon Cycle

The natural circulation of carbon among the atmosphere is vital to humankind. However, studies show that humans misuse this natural cycle and abuse it instead. Whenever people burn fossil fuels such as coal, oil and natural gas, they produce carbon dioxide ? which is an excess addition to the natural flow of carbon in the environment. The problem is that the release of carbon dioxide is much more than what plants and trees can re-absorb. People are not only adding CO2 to the atmosphere, they are also influencing the ability of natural sinks, such as forests, to remove it from the atmosphere. Humans alter the carbon cycle by contributing doubled or tripled greenhouse gas to the atmosphere, faster than nature can ever eliminate. Worst, nature?s balance is destroyed.

The Result

Greenhouse gases include carbon dioxide, methane, nitrous oxide, fluorinated gas and other gases. Although these gasses contribute to climate change, carbon dioxide is the largest greenhouse gas that humans emit. The reason why people talk about carbon emissions most, is because we produce more carbon dioxide than any other greenhouse gas.

The increasing amount of carbon emissions cause global warming to become more evident. All the extra carbon dioxide causes the earth?s overall temperature to rise as well. As the temperature increases, climate also changes unpredictably. Flood, droughts, heat waves and hurricanes are now widely experienced even in places where these phenomenon never used to happen.

To be able to reduce the risk of more severe weather conditions means burning less fossil fuels and shifting more to renewable sources. This is never easy. But, definitely, it’s worth a try.

Ready to work with Denizon?