Will UK Retailers Skim the Cream with ESOS?

The British Retail Consortium (BRC) was quick out on the starting blocks with an ambitious plan to cut energy costs by 25% in 5 years. Their ?25-in-5? initiative is chasing a target of ?4.4 billion savings during the duration. Part of this program involves ?cutting a path through a complex and inaccessible policy landscape?. BRC believes this drawback is making its members think twice about making energy efficiency investments.

The UK?s sprawling network of grocers, department stores and malls is the nation?s second most hungry energy customer, having spent ?3.3 billion on it in 2013 when it accounted for almost 20% of carbon released. If you think that sounds bad, it purchased double that amount in 2005. However the consortium believes there is still more to come.

It bases this assumption on the push effect of UK energy rates increasing by a quarter during the duration of the project. ?So it makes sense to be investing in energy efficiency rather than paying bills,? Andrew Bolitho (property, energy, and transport policy adviser) told Business Green. The numbers mentioned exclude third party transport and distribution networks not under the British Retail Consortium umbrella.

The ?complex and inaccessible policy landscape? is the reflection of UK legislators not tidying up as they go along. BRC cites a ?vast number of policies ? spreading confusion, undermining investment and making it harder to raise capital?. The prime culprits are Britain?s CRC Energy Efficient Scheme (previously Carbon Reduction Commitment) which publishes league tables and ESOS. Andrew Bolitho believes this duality is driving confused investors away.

The British Retail Consortium is at pains to point out that this is not about watering things down, but making it simpler for participating companies to report on energy matters at a single point. It will soon go live with its own information hub providing information for retailers wishing to measure consumption at critical points, assemble the bigger picture and implement best practice.

Ecovaro agrees with Andrew Bolitho that lowering energy demand and cutting carbon is not just about technology. We can do much in terms of changing attitudes and providing refresher training and this does not have to cost that much. Studies have shown repeatedly that there is huge benefit in inviting employees to cross over to our side. In fact, they may already be on board to an extent that may surprise.

Check our similar posts

What Sub-Metering did for Nissan in Tennessee

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ?We’ve already squeezed the lemon dry,? they seemed to say. ?What makes you think there?s more to come??

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ?The only disadvantage of sub-metering is that now we can’t imagine doing without it.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Energy Audit – clearly clear?

An energy audit is an examination of an energy system to ensure that energy is being used efficiently. It is the inspection, survey and analysis of energy flows for energy conservation in a building. Energy audits can be conducted by building managers who examine the energy account of an energy system, checks the way energy is used in its various components, checks for areas of inefficiency or where less energy can be used, and identifies the means for improvement.

An energy audit is often used to identify cost effective ways to improve the comfort and efficiency of buildings. In addition, homes/ enterprises may qualify for energy efficiency grants from central government. Energy audits seek to prioritise the energy uses from the greatest to least cost effective opportunities for energy savings.

An energy audit is an effective energy management tool. By identifying and implementing improvements as identified, savings can be achieved not only on energy bills, but also equipment will be able to attain a longer life under efficient operation. All these mean actual dollar savings.

An energy audit has to be conducted by a competent person with adequate technical knowledge on building services installations, after which he/she comes up with a report recommending plans on the Energy Management Opportunities (EMO) for energy saving.

An energy audit culminates to a written report. This could show energy use for a given time period (for example a year) and the impact of any suggested improvements per year. Energy audit reports are then used to identify cost effective ways to improve the comfort and efficiency of buildings. The energy audit report therefore gives management an understanding of the energy consumption scenario and energy saving plans formulation.
Energy audit reports should always translate into action. No matter how well articulated, the energy management objectives are afterall, an energy audit (EMOs), all the effort will be futile if no action is taken. The link between the audit and action is the audit report. It is therefore important for the audit reports to be understandable for all the target audiences/ readers, all of whom may have diverse needs, hence the reason why they should be clear, concise and comprehensible.

What are the do?s and don’ts when writing energy audit reports?

Avoid technical jargon as much as possible; present information graphically; use different graphics such as pie charts, data tables. Schematics of equipment layouts and digital photos tend to make EMO reports less dry. Some of the energy audit software?s come in handy in the generation of such graphs and charts.
The climax of it all is the recommendations, which should be made very fascinating.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Is Technical Debt? A Complete Guide

You buy the latest iPhone on credit. Turn to fast car loan services to get yourself those wheels you’ve been eyeing for a while. Take out a mortgage to realise your dream of being a homeowner. Regardless of the motive, the common denominator is going into financial debt to achieve something today, and pay it off in future, with interest. The final cost will be higher than the loan value that you took out in the first place. However, debt is not limited to the financial world.

Technical Debt Definition

Technical debt – which is also referred to as code debt, design debt or tech debt – is the result of the development team taking shortcuts in the code to release a product today, which will need to be fixed later on. The quality of the code takes a backseat to issues like market forces, such as when there’s pressure to get a product out there to beat a deadline, front-run the competition, or even calm jittery consumers. Creating perfect code would take time, so the team opts for a compromised version, which they will come back later to resolve. It’s basically using a speedy temporary fix instead of waiting for a more comprehensive solution whose development would be slower.

How rampant is it? 25% of the development time in large software organisations is actually spent dealing with tech debt, according to a multiple case study of 15 organizations. “Large” here means organizations with over 250 employees. It is estimated that global technical debt will cost companies $4 trillion by 2024.

Is there interest on technical debt?

When you take out a mortgage or service a car loan, the longer that it takes to clear it the higher the interest will be. A similar case applies to technical debt. In the rush to release the software, it comes with problems like bugs in the code, incompatibility with some applications that would need it, absent documentation, and other issues that pop up over time. This will affect the usability of the product, slow down operations – and even grind systems to a halt, costing your business. Here’s the catch: just like the financial loan, the longer that one takes before resolving the issues with rushed software, the greater the problems will pile up, and more it will take to rectify and implement changes. This additional rework that will be required in future is the interest on the technical debt.

Reasons For Getting Into Technical Debt

In the financial world, there are good and bad reasons for getting into debt. Taking a loan to boost your business cashflow or buy that piece of land where you will build your home – these are understandable. Buying an expensive umbrella on credit because ‘it will go with your outfit‘ won’t win you an award for prudent financial management. This also applies to technical debt.

There are situations where product delivery takes precedence over having completely clean code, such as for start-ups that need their operations to keep running for the brand to remain relevant, a fintech app that consumers rely on daily, or situations where user feedback is needed for modifications to be made to the software early. On the other hand, incurring technical debt because the design team chooses to focus on other products that are more interesting, thus neglecting the software and only releasing a “just-usable” version will be a bad reason.

Some of the common reasons for technical debt include:

  • Inadequate project definition at the start – Where failing to accurately define product requirements up-front leads to software development that will need to be reworked later
  • Business pressure – Here the business is under pressure to release a product, such as an app or upgrade quickly before the required changes to the code are completed.
  • Lacking a test suite – Without the environment to exhaustively check for bugs and apply fixes before the public release of a product, more resources will be required later to resolve them as they arise.
  • Poor collaboration – From inadequate communication amongst the different product development teams and across the business hierarchy, to junior developers not being mentored properly, these will contribute to technical debt with the products that are released.
  • Lack of documentation – Have you launched code without its supporting documentation? This is a debt that will need to be fulfilled.
  • Parallel development – This is seen when working on different sections of a product in isolation which will, later on, need to be merged into a single source. The greater the extent of modification on an individual branch – especially when it affects its compatibility with the rest of the code, the higher the technical debt.
  • Skipping industrial standards – If you fail to adhere to industry-standard features and technologies when developing the product, there will be technical debt because you will eventually need to rework the product to align with them for it to continue being relevant.
  • Last-minute product changes – Incorporating changes that hadn’t been planned for just before its release will affect the future development of the product due to the checks, documentation and modifications that will be required later on

Types of Technical Debt

There are various types of technical debt, and this will largely depend on how you look at it.

  • Intentional technical debt – which is the debt that is consciously taken on as a strategy in the business operations.
  • Unintentional technical debt – where the debt is non-strategic, usually the consequences of a poor job being done.

This is further expounded in the Technical Debt Quadrant” put forth by Martin Fowler, which attempts to categorise it based on the context and intent:

Technical Debt Quadrant

Source: MartinFowler.com

Final thoughts

Technical debt is common, and not inherently bad. Just like financial debt, it will depend on the purpose that it has been taken up, and plans to clear it. Start-ups battling with pressure to launch their products and get ahead, software companies that have cut-throat competition to deliver fast – development teams usually find themselves having to take on technical debt instead of waiting to launch the products later. In fact, nearly all of the software products in use today have some sort of technical debt.

But no one likes being in debt. Actually, technical staff often find themselves clashing with business executives as they try to emphasise the implications involved when pushing for product launch before the code is completely ready. From a business perspective, it’s all about weighing the trade-offs, when factoring in aspects such as the aspects market situation, competition and consumer needs. So, is technical debt good or bad? It will depend on the context. Look at it this way: just like financial debt, it is not a problem as long as it is manageable. When you exceed your limits and allow the debt to spiral out of control, it can grind your operations to a halt, with the ripple effects cascading through your business.

 

Ready to work with Denizon?