Still Looking For A Way To Consolidate Excel Spreadsheets?

We use Excel spreadsheets everyday. We use them to prepare budgets and reports. We even use them when drafting plans and forecasts. With this ubiquitous office application, entering data and carrying out on-the-spot computations and analysis is quick and easy. However, when it’s time to consolidate Excel data, I won’t be surprised if you wished there was an easy way.

In fact, you were probably looking for a solution before landing on this page, right?

Because budgeting, reporting, planning, and forecasting are normally done by a group of people and not just by one individual, spreadsheets bearing the necessary data can be scattered in different folders, desktops, offices, and, in the case of really large organisations, geographical locations.

How are these data brought together? Through email attachments or by sharing folders in a local area network. Each member of the working team sends out copies of their own spreadsheets to other members, who then review them, make necessary changes, then send back to the source. The files can go back and forth until everyone is satisfied.

With each sending, sharing, and edit, business critical data gets exposed to all sorts of spreadsheet risks. Copy-paste errors, omission of a negative sign, erroneous inputs, accidental deletions, and even fraudulent manipulations can take place. And because each member can end up with multiple versions of a single spreadsheet, the chance of working on the wrong version exists.

So when all the data gets consolidated and finalised, it is possible for the end product to contain significant errors. It may not happen all the time, but it certainly can happen.

But that’s not the only disadvantage of spreadsheets. The entire process of comparing cells and sheets, copy-pasting data, linking cells, writing formulas, and specifying ranges can be very tedious, not to mention time-consuming. With spreadsheets, beating deadlines is always an almost impossible exercise.

What you need is a solution that will no longer require you to consolidate Excel spreadsheets. One that is faster, more reliable, and significantly less error-prone. Denizon has a server-based solution that has all those capabilities and much more.

With a server-based solution, all your data is stored in one place. Everyone is working on the same data source, so consolidation is fast and easy. Everyone becomes synchronised and no one has to worry about working on the wrong version.

Read more about our server-based solution

 

More Spreadsheet Blogs

 

Spreadsheet Risks in Banks

 

Top 10 Disadvantages of Spreadsheets

 

Disadvantages of Spreadsheets – obstacles to compliance in the Healthcare Industry

 

How Internal Auditors can win the War against Spreadsheet Fraud

 

Spreadsheet Reporting – No Room in your company in an age of Business Intelligence

 

Still looking for a Way to Consolidate Excel Spreadsheets?

 

Disadvantages of Spreadsheets

 

Spreadsheet woes – ill equipped for an Agile Business Environment

 

Spreadsheet Fraud

 

Spreadsheet Woes – Limited features for easy adoption of a control framework

 

Spreadsheet woes – Burden in SOX Compliance and other Regulations

 

Spreadsheet Risk Issues

 

Server Application Solutions – Don’t let Spreadsheets hold your Business back

 

Why Spreadsheets can send the pillars of Solvency II crashing down

?

Advert-Book-UK

amazon.co.uk

?

Advert-Book-USA

amazon.com

 

Check our similar posts

What Kanban can do for Call Centre Response Times

When a Toyota industrial engineer named Taiichi Ohno was investigating ways to optimise production material stocks in 1953, it struck him that supermarkets already had the key. Their customers purchased food and groceries on a just-in-time basis, because they trusted continuity of supply. This enabled stores to predict demand, and ensure their suppliers kept the shelves full.

The Kanban system that Taiichi Ohno implemented included a labelling system. His Kanban tickets recorded details of the factory order, the delivery destination, and the process intended for the materials. Since then, Ohno?s system has helped in many other applications, especially where customer demand may be unpredictable.

Optimising Workflow in Call Centres
Optimising workflow in call centres involves aiming to have an agent pick up an incoming call within a few rings and deal with it effectively. Were this to be the case we would truly have a just-in-time business, in which operators arrived and left their stations according to customer demand. For this to be possible, we would need to standardise performance across the call centre team. Moving optimistically in that direction we would should do these three things:

  • Make our call centre operation nimble
  • Reduce the average time to handle calls
  • Decide an average time to answer callers

When we have done that, we are in a position to apply these norms to fluctuating call frequencies, and introduce ?kanbanned? call centre operators.

Making Call Centre Operations Nimble
The best place to start is to ask the operators and support staff what they think. Back in the 1960?s Robert Townsend of Avis Cars famously said, ?ask the people ? they know where the wheels are squeaking? and that is as true as ever.

  1. Begin by asking technical support about downtime frequencies, duration, and causes. Given the cost of labour and frustrated callers, we should have the fastest and most reliable telecoms and computer equipment we can find.
  1. Then invest in training and retraining operators, and making sure the pop-up screens are valuable, valid, and useful. They cannot do their job without this information, and it must be at least as tech-savvy as their average callers are.
  1. Finally, spruce up the call centre with more than a lick of paint to awaken a sense of enthusiasm and pride. Find time for occasional team builds and fun during breaks. Tele-operators have a difficult job. Make theirs fun!

Reducing Average Time to Handle Calls
Average length of contact is probably our most important metric. We should beware of shortening this at the cost of quality of interaction. To calculate it, use this formula:

Total Work Time + Total Hold Time + Total Post Call Time

Divided By

Total Calls Handled in that Period

Share recordings of great calls that highlight how your best operators work. Encourage role-play during training sessions so people learn by doing. Publish your average call-handling time statistics. Encourage individual operators to track how they are doing against these numbers. Make sure your customer information is up to date. While they must confirm core data, limit this so your operators can get down to their job sooner.

Decide a Target Time to Answer Calls
You should know what is possible in a matter of a few weeks. Do not attempt to go too tight on this one. It is better to build in say 10% slack that you can always trim in future. Once you have decided this, you can implement your Kanban system.

Introducing Kanban in Your Call Centre Operation
Monitor your rate of incoming calls through your contact centre, and adjust your operator-demand metric on an ongoing basis. Use this to calculate your over / under demand factor. Every operator should know the value on this Kanban ticket. It will tell them whether to speed up a little, or slow down a bit so they deliver the effort the call rate demands. It will also advise the supervisor when to call up reserves.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Uncover hidden opportunities with energy data analytics

What springs to mind when you hear the words energy data analytics? To me, I feel like energy data analytics is not my thing. Energy data analytics, however, is of great importance to any organisation or business that wants to run more efficiently, reduce costs, and increase productivity. Energy efficiency is one of the best ways to accomplish these goals.

Energy efficiency is not about investment in expensive equipment and internal reorganization. Enormous energy saving opportunities is hidden in already existing energy data. Given that nowadays, energy data can be recorded from almost any device, a lot of data is captured regularly and therefore a lot of data is readily available.

Organisations can use this data to convert their buildings’ operations from being a cost centre to a revenue centre through reduction of energy-related spending which has a significant impact on the profitability of many businesses. All this is possible through analysis and interpretation of data to predict future events with greater accuracy. Energy data analytics therefore is about using very detailed data for further analysis, and is as a consequence, a crucial aspect of any data-driven energy management plan.

The application of Data and IT could drive significant cost savings in company-owned buildings and vehicle fleets. Virtual energy audits can be performed by combining energy meter data with other basic data about a building e.g. location, to analyse and identify potential energy savings opportunities. Investment in energy dashboards can further enable companies to have an ongoing look at where energy is being consumed in their buildings, and thus predict ways to reduce usage, not to mention that energy data analytics unlock savings opportunities and help companies to understand their everyday practices and operating requirements in a much more comprehensive manner.

Using energy data analytics can enable an organisation to: determine discrepancies between baseline and actual energy data; benchmark and compare previous performance with actual energy usage. Energy data analytics also help businesses and organisations determine whether or not their Building Management System (BMS) is operating efficiently and hitting the targeted energy usage goals. They can then use this data to investigate areas for improvement or energy efficient upgrades. When energy data analytics are closely monitored, companies tend to operate more efficiently and with better control over relevant BMS data.

New Focus on Monitoring Soil

There is nothing new about monitoring soil in arid conditions. South Africa and Israel have been doing it for decades. However climate change has increased its urgency as the world comes to terms with pressure on the food chain. Denizon decided to explore trends at the macro first world level and the micro third world one.

In America, the Coordinated National Soil Moisture Network is going ahead with plans to create a database of federal and state monitoring networks and numerical modelling techniques, with an eye on soil-moisture database integration. This is a component of the National Drought Resilience Partnership that slots into Barrack Obama?s Climate Action Plan.

This far-reaching program reaches into every corner of American life to address the twin scourges of droughts and inundation, and the agency director has called it ?probably ?… one of the most innovative inter-agency tools on the planet?. The pilot project involving remote moisture sensing and satellite observation targets Oklahoma, North Texas and surrounding areas.

Africa has similar needs but lacks America?s financial muscle. Princeton University ecohydrologist Kelly Caylor is bridging the gap in Kenya and Zambia by using cell phone technology to transmit ecodata collected by low-cost ?pulsepods?.

He deploys the pods about the size of smoke alarms to measure plants and their environment.?Aspects include soil moisture to estimate how much water they are using, and sunlight to approximate the rate of photosynthesis. Each pod holds seven to eight sensors, can operate on or above the ground, and transmits the data via sms.

While the system is working well at academic level, there is more to do before the information is useful to subsistence rural farmers living from hand to mouth. The raw data stream requires interpretation and the analysis must come through trusted channels most likely to be the government and tribal chiefs. Kelly Caylor cites the example of a sick child. The temperature reading has no use until a trusted source interprets it.

He has a vision of climate-smart agriculture where tradition gives way to global warming. He involves local farmers in his research by enrolling them when he places pods, and asking them to sms weekly weather reports to him that he correlates with the sensor data. As trust builds, he hopes to help them choose more climate-friendly crops and learn how to reallocate labour as seasons change.

Ready to work with Denizon?