Which Services to Share?

It often makes sense to pool resources. Farmers have been doing so for decades by collectively owning expensive combine harvesters. France, Germany, the United Kingdom and Spain have successfully pooled their manufacturing power to take on Boeing with their Airbus. But does this mean that shared services are right in every situation?

The Main Reasons for Sharing

The primary argument is economies of scale. If the Airbus partners each made 25% of the engines their production lines would be shorter and they would collectively need more technicians and tools. The second line of reasoning is that shared processes are more efficient, because there are greater opportunities for standardisation.

Is This the Same as Outsourcing?

Definitely not! If France, Germany, the United Kingdom and Spain has decided to form a collective airline and asked Boeing to build their fleet of aircraft, then they would have outsourced airplane manufacture and lost a strategic industry. This is where the bigger picture comes into play.

The Downside of Sharing

Centralising activities can cause havoc with workflow, and implode decentralised structures that have evolved over time. The Airbus technology called for creative ways to move aircraft fuselages around. In the case of farmers, they had to learn to be patient and accept that they would not always harvest at the optimum time.

Things Best Not Shared

Core business is what brings in the money, and this should be tailor-made to its market. It is also what keeps the company afloat and therefore best kept on board. The core business of the French, German, United Kingdom and Spanish civilian aircraft industry is transporting passengers. This is why they are able to share an aircraft supply chain that spun off into a commercial success story.

Things Best Shared

It follows that activities that are neither core nor place bound – and can therefore happen anywhere ? are the best targets for sharing. Anything processed on a computer can be processed on a remote computer. This is why automated accounting, stock control and human resources are the perfect services to share.

So Case Closed Then?

No, not quite. ?Technology has yet to overtake our humanity, our desire to feel part of the process and our need to feel valued. When an employee, supplier or customer has a problem with our administration it’s just not good enough to abdicate and say ?Oh, you have to speak to Dublin, they do it there?.

Call centres are a good example of abdication from stakeholder care. To an extent, these have ?confiscated? the right of customers to speak to speak directly to their providers. This has cost businesses more customers that they may wish to measure. Sharing services is not about relinquishing the duty to remain in touch. It is simply a more efficient way of managing routine matters.

Check our similar posts

What Is Technical Debt? A Complete Guide

You buy the latest iPhone on credit. Turn to fast car loan services to get yourself those wheels you’ve been eyeing for a while. Take out a mortgage to realise your dream of being a homeowner. Regardless of the motive, the common denominator is going into financial debt to achieve something today, and pay it off in future, with interest. The final cost will be higher than the loan value that you took out in the first place. However, debt is not limited to the financial world.

Technical Debt Definition

Technical debt – which is also referred to as code debt, design debt or tech debt – is the result of the development team taking shortcuts in the code to release a product today, which will need to be fixed later on. The quality of the code takes a backseat to issues like market forces, such as when there’s pressure to get a product out there to beat a deadline, front-run the competition, or even calm jittery consumers. Creating perfect code would take time, so the team opts for a compromised version, which they will come back later to resolve. It’s basically using a speedy temporary fix instead of waiting for a more comprehensive solution whose development would be slower.

How rampant is it? 25% of the development time in large software organisations is actually spent dealing with tech debt, according to a multiple case study of 15 organizations. “Large” here means organizations with over 250 employees. It is estimated that global technical debt will cost companies $4 trillion by 2024.

Is there interest on technical debt?

When you take out a mortgage or service a car loan, the longer that it takes to clear it the higher the interest will be. A similar case applies to technical debt. In the rush to release the software, it comes with problems like bugs in the code, incompatibility with some applications that would need it, absent documentation, and other issues that pop up over time. This will affect the usability of the product, slow down operations – and even grind systems to a halt, costing your business. Here’s the catch: just like the financial loan, the longer that one takes before resolving the issues with rushed software, the greater the problems will pile up, and more it will take to rectify and implement changes. This additional rework that will be required in future is the interest on the technical debt.

Reasons For Getting Into Technical Debt

In the financial world, there are good and bad reasons for getting into debt. Taking a loan to boost your business cashflow or buy that piece of land where you will build your home – these are understandable. Buying an expensive umbrella on credit because ‘it will go with your outfit‘ won’t win you an award for prudent financial management. This also applies to technical debt.

There are situations where product delivery takes precedence over having completely clean code, such as for start-ups that need their operations to keep running for the brand to remain relevant, a fintech app that consumers rely on daily, or situations where user feedback is needed for modifications to be made to the software early. On the other hand, incurring technical debt because the design team chooses to focus on other products that are more interesting, thus neglecting the software and only releasing a “just-usable” version will be a bad reason.

Some of the common reasons for technical debt include:

  • Inadequate project definition at the start – Where failing to accurately define product requirements up-front leads to software development that will need to be reworked later
  • Business pressure – Here the business is under pressure to release a product, such as an app or upgrade quickly before the required changes to the code are completed.
  • Lacking a test suite – Without the environment to exhaustively check for bugs and apply fixes before the public release of a product, more resources will be required later to resolve them as they arise.
  • Poor collaboration – From inadequate communication amongst the different product development teams and across the business hierarchy, to junior developers not being mentored properly, these will contribute to technical debt with the products that are released.
  • Lack of documentation – Have you launched code without its supporting documentation? This is a debt that will need to be fulfilled.
  • Parallel development – This is seen when working on different sections of a product in isolation which will, later on, need to be merged into a single source. The greater the extent of modification on an individual branch – especially when it affects its compatibility with the rest of the code, the higher the technical debt.
  • Skipping industrial standards – If you fail to adhere to industry-standard features and technologies when developing the product, there will be technical debt because you will eventually need to rework the product to align with them for it to continue being relevant.
  • Last-minute product changes – Incorporating changes that hadn’t been planned for just before its release will affect the future development of the product due to the checks, documentation and modifications that will be required later on

Types of Technical Debt

There are various types of technical debt, and this will largely depend on how you look at it.

  • Intentional technical debt – which is the debt that is consciously taken on as a strategy in the business operations.
  • Unintentional technical debt – where the debt is non-strategic, usually the consequences of a poor job being done.

This is further expounded in the Technical Debt Quadrant” put forth by Martin Fowler, which attempts to categorise it based on the context and intent:

Technical Debt Quadrant

Source: MartinFowler.com

Final thoughts

Technical debt is common, and not inherently bad. Just like financial debt, it will depend on the purpose that it has been taken up, and plans to clear it. Start-ups battling with pressure to launch their products and get ahead, software companies that have cut-throat competition to deliver fast – development teams usually find themselves having to take on technical debt instead of waiting to launch the products later. In fact, nearly all of the software products in use today have some sort of technical debt.

But no one likes being in debt. Actually, technical staff often find themselves clashing with business executives as they try to emphasise the implications involved when pushing for product launch before the code is completely ready. From a business perspective, it’s all about weighing the trade-offs, when factoring in aspects such as the aspects market situation, competition and consumer needs. So, is technical debt good or bad? It will depend on the context. Look at it this way: just like financial debt, it is not a problem as long as it is manageable. When you exceed your limits and allow the debt to spiral out of control, it can grind your operations to a halt, with the ripple effects cascading through your business.

 

How Energy Conservation saved Fambeau River Paper

Rising energy costs caught this Wisconsin paper mill napping, and it soon shut down because it was unable to innovate. Someone else bought it and turned it around by measuring, modifying, monitoring and listening to people.

The Fambeau River Paper Mill in Prince County, Wisconsin USA employed 13% of the city?s residents until rising energy costs shut it down in 2006. Critics wrote it off as an energy dinosaur unable to adapt. But that was before another company bought it out and resuscitated it as a fleet-footed winner.

Its collapse was a long time coming and almost inevitable. Wisconsin electricity prices had grown a third since 1997, the machinery was antiquated and the dependence on fossil power absolute. So what did the new owners change, and is there anything we can learn from this?

The key to understanding what suddenly went right was the new owners? ability to listen. They requested a government Energy Assessment that suggested a number of small step changes that took them where they needed to go in terms of energy saving. These included enhancements in steam systems and fuel switch modifications. However they needed more than that.

The second game changer was tracking down key members of the old workforce and listening to them too. This combination enabled them to finally hire back 92% of the original labour force under the same terms and conditions – and still make a profit (the other 8% had moved on elsewhere or retired). The combined energy savings produced a payback plan of 5.25 years. Three years into the project their capital investment of $15 million had already clawed back the following electricity savings.

  • Evaporator Temperature Control $2,245,000
  • Hot Water Heat Recovery $2,105,000
  • Paper Machine Devronisers $1,400,000
  • Increased Boiler Output $1,134,000
  • Paper Machine Modifications; $761,000
  • Motive Air Dryer $610,000
  • Accumulator Savings $448,000
  • Densified Fuels Plant $356,000

In terms of carbon dioxide produced, the Fambeau River Paper Mill?s contribution dropped from 1 ton to 600 pounds.

How well do you know where your company?s energy spend is concentrated, and how this compares with your industry average; could you be doing better if you innovated, and by how much? Get these questions answered by asking ecoVaro how easy it could be to get on top of your carbon metrics. This could cost you a phone call and a payback on it so rapid it’s not worth stopping to calculate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?