Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

Check our similar posts

How COBIT helps you achieve SOX Compliance

First released way back in 1996, COBIT has already been around for quite a while. One reason why it never took off was because companies were never compelled to use it ? until now. Today, many CEOs and CIOs are finding it to be a vital tool for achieving SOX compliance in IT.

Thanks to SOX, COBIT (Control Objectives for Information and related Technology) is now one of the most widely accepted source of guidance among companies who have IT integrated with their accounting/financial systems. It has also gained general acceptability with third parties and regulators. But how did this happen?

Role of control frameworks in SOX compliance

You see, the Sarbanes-Oxley Act, despite having clearly manifested the urgency of establishing effective internal controls, does not provide a road map for you to follow nor does it specify a yardstick to help you determine whether an acceptable mileage in the right direction has already been achieved.

In other words, if you were a CIO and you wanted to find guidance on what steps you had to take to achieve compliance, you wouldn’t be able to find the answers in the legislation itself.

That can be a big problem. Two of your main SOX compliance obligations as a CEO or CIO is to assume responsibility in establishing internal controls over financial reporting and to certify their effectiveness. After that, the external auditors are supposed to attest to your assertions. Obviously, there has to be a well-defined basis before you can make such assertions and auditors can attest to anything.

In the language of auditors, this ?well-defined basis? is known as a control framework. Simply put, once you certify the presence of adequate internal controls in your organisation, the external auditor will ask, ?What control framework did you use??

Knowing what control framework you employed will help external auditors determine how to proceed with their evaluations and tests. For your part, a control framework can serve as a guide to help you work towards specific objectives for achieving compliance. Both of you can use it as a common reference point before drawing any conclusions regarding your controls.

But there are many control frameworks out there. What should you use?

How SOX, COSO, and COBIT fit together

Fortunately, despite SOX?s silence regarding control frameworks, you aren’t left entirely to your own devices. You could actually take a hint from the SEC and PCAOB, two of the lead organisations responsible for implementing SOX. SEC and PCAOB point to the adoption of any widely accepted control framework.

In this regard, they both highly endorse COSO, a well-established internal control framework formulated by the Committee of Sponsoring Organisations of the Treadway Commission (COSO). Now, I must tell you, if you’re looking specifically for instructions pertaining to IT controls, you won’t find those in COSO either.

Although COSO is the most established control framework for enterprise governance and risk management you’ll ever find (and in fact, it’s what we recommend for your general accounting processes), it lacks many IT-related details. What is therefore needed for your IT processes is a framework that, in addition to being highly aligned with COSO, also provides more detailed considerations for IT.

This is where COBIT fits the bill.

How COBIT can contribute to your regulatory compliance endeavors

COBIT builds upon and adheres with COSO while providing a finer grain of detail focused on IT. You can even find a mapping between COBIT IT processes and COSO components within the COBIT document itself.

Designed with regulatory compliance in mind, COBIT lays down a clear path for developing policies and good practice for IT control, thus enabling you to bridge the gap between control requirements, technical issues, and business risks.

Some of the components you’ll find in COBIT include:

IT control objectives

These are statements defining specific desired results that, as a whole, characterise a well-managed IT process. They come in two forms for each COBIT-defined IT process: a high-level control objective and a number of detailed control objectives. These objectives will enable you to have a sense of direction by telling you exactly what you need to aim for.

Maturity models

These are used as benchmarks that give you a relative measurement stating where your level of management or control over an IT process or high-level control objective stands. It serves as a basis for setting as-is and to-be positions and enables support for gap analysis, which determines what needs to be done to achieve a chosen level. Basically, if a control objective points you to a direction, then its corresponding maturity model tells you how far in that direction you’ve gone.

RACI charts

These charts tell you who (e.g. CEO, CFO, Head of Operations, Head of IT Administration) should be Responsible, Accountable, Consulted, and Informed for each activity.

Goals and Metrics

These are sets of goals along with the corresponding metrics that allow you to measure against those goals. Goals and metrics are defined in three levels: IT goals and metrics, which define what business expects from IT; process goals and metrics, which define what the IT process should deliver to support It’s objectives; and activity goals and metrics, which measure how well the process is performing.

In addition to those, you’ll also find mappings of each process to the information criteria involved, IT resources that need to be leveraged, and the governance focus areas that are affected.

Everything is presented in a logical and manageable structure, so that you can easily draw connections between IT processes and business goals, which will in turn help you decide what appropriate governance and control is needed. Ultimately, COBIT can equip you with the right tools to maintain a cost-benefit balance as you work towards achieving SOX compliance.

Saving Energy Step 2 ? More Practical Ideas

In my previous blog, we wrote about implementing a management system. This boils down to sharing a common vision up and down and across the organisation, measuring progress, and pinning accountability on individuals. This time, we would like to talk about simple things that organisations can do to shrink their carbon footprints. But first let’s talk about the things that hold us back.

When we take on new clients we sometimes find that they are baffled by what I call energy industry-speak. We blame this partly on government. We understand they need clear definitions in their regulations. It’s just a pity they don’t use ordinary English when they put their ideas across in public forums.

Consultants sometimes seem to take advantage of these terms, when they roll words like audit, assessment, diagnostic, examination, survey and review across their pages. Dare we suggest they are trying to confuse with jargon? We created ecoVaro to demystify the energy business. Our goal is to convert data into formats business people understand. As promised, here are five easy things your staff could do without even going off on training.

  1. Right-size equipment? outsource peak production in busy periods, rather than wasting energy on a system that is running at half capacity mostly.
  2. Re-Install equipment to OEM specifications ? individual pieces of equipment need accurate interfacing with larger systems, to ensure that every ounce of energy delivers on its promise.
  3. Maintain to specification ? make sure machine tools are within limits, and that equipment is well-lubricated, optimally adjusted and running smoothly.
  4. Adjust HVAC to demand ? Engineers design heating and ventilation systems to cope with maximum requirements, and not all are set up to adapt to quieter periods. Try turning off a few units and see what happens.
  5. Recover Heat ? Heat around machines is energy wasted. Find creative ways to recycle it. If you can’t, then insulate the equipment from the rest of the work space, and spend less money cooling the place down.

Well that wasn’t rocket science, was it? There are many more things that we can do to streamline energy use, and coax our profits up. This is as true in a factory as in the office and at home. The power we use is largely non-renewable. Small savings help, and banknotes pile up quickly.

What Heijunka is & How it Smooths Call Centre Production

The Japanese word Heijunka, pronounced hi-JUNE-kuh means ?levelling? in the sense of balancing workflows. It helps lean organizations shift priorities in the face of fluctuating customer demand. The goal is to have the entire operation working at the same pace throughout, by continuously adjusting the balance between predictability, flexibility, and stability to level out demand.

Henry Ford turned the American motor manufacturing industry upside down by mass-producing his iconic black motor cars on two separate production lines. In this photograph, body shells manufactured upstairs come down a ramp and drop onto a procession of cars almost ready to roll in 1913.

Smoothing Production in the Call Centre Industry

Call Centres work best in small teams, each with a supervisor to take over complex conversations. In the past, these tended to operate in silos with each group in semi-isolation representing a different set of clients. Calls came through to operators the instant the previous ones concluded. By the law of averages, inevitably one had more workload than the rest at a particular point in time as per this example.

Modern telecoms technology makes it possible to switch incoming lines to different call centre teams, provided these are multi-skilled. A central operator controls this manually by observing imbalanced workflows on a visual system called a Heijunka Box. The following example comes from a different industry, and highlights how eight teams share uneven demand for six products.

This departure from building handmade automobiles allowed Henry to move his workforce around to eliminate bottlenecks. For example, if rolls of seat leather arrived late he could send extra hands upstairs to speed up the work there, while simultaneously slowing chassis production. Ford had the further advantage of a virtual monopoly in the affordable car market. He made his cars at the rate that suited him best, with waiting lists extending for months.

A Modern, More Flexible Approach

Forces of open competition and the Six Sigma drive for as-close-to-zero defects dictates a more flexible approach, as embodied in this image published by the Six Sigma organisation. This represents an ideal state. In reality, one force usually has greater influence, for example decreasing stability enforces a more flexible approach.

Years ago, Japanese car manufacturer Toyota moved away from batching in favour of a more customer-centric approach, whereby buyers could customise orders from options held in stock for different variations of the same basic model. The most effective approach lies somewhere between Henry Ford?s inflexibility and Toyota?s openness, subject to the circumstances at the moment.

A Worked Factory Example

The following diagram suggests a practical Heijunka application in a factory producing three colours of identical hats. There are two machines for each option, one or both of which may be running. In the event of a large order for say blue hats, the company has the option of shifting some blue raw material to the red and green lines so to have the entire operation working at a similar rate.

Predictability, Flexibility, and Stability at Call Centre Service

The rate of incoming calls is a moving average characterised by spikes in demand. Since the caller has no knowledge whether high activity advisories are genuine, it is important to service them as quickly as possible. Lean process engineering provides technology to facilitate flexibility. Depending on individual circumstances, each call centre may have its own definition of what constitutes an acceptably stable situation.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?