How Bombardier Inc. scored a Bulls Eye

When travelling anywhere in the world on land, sea or air, chances are, you will travel courtesy of something made by aerospace and transportation company Bombardier based in Montreal, Canada. In 2009, it set itself the goal of carbon neutrality by 2020. In other words, it hoped to remove as much carbon dioxide from the atmosphere as it was putting in.

By 2012, Bombardier concluded it was not going to become carbon neutral by 2020 at its current rate of progress. It discounted purchasing carbon offsets because it believed it would serve its interests better by introducing new energy-saving products to market faster. That way, it would achieve its objectives vicariously through the decisions of its customers. But that was not all that forward-thinking Bombardier did. It also set itself the following inward-facing objectives:

  • Reduce carbon footprint through efficient use of energy and less emissions
  • Involve the Bombardier workforce to raise awareness of behaving responsibly
  • Implement sustainable initiatives to further reduce the company carbon footprint

Specific Examples

At its Wichita site, Bombardier (a) fitted a white roof and insulation reducing summer energy consumption by 40%, (b) added an energy recovery wheel to balance air circulation, and (c) introduced skylights with integrated controllers to lower energy consumption by lighting.

At Mirabel, it enhanced the flue-gas management system by adding a pressure differential damper.

At Belfast, Bombardier (a) optimised HVAC systems to reduce pressure on chilling and air-handling plants, (b) installed solar panels on the roof, and (c) obtained approval for a waste-to-energy plant that will convert 120,000 tonnes of non-recyclable waste material annually.

By the end of 2013, Bombardier had already beaten its immediate targets by:

  • Reducing energy consumption by 11% against 2009
  • Reducing greenhouse gas emission by 23% against 2009
  • Reducing water consumption by 6% against 2012

Future Plans

Bombardier will never stop striving to reach its goal of carbon neutrality by 2020. It has a number of other projects in the pipeline waiting for scarce resources to fund them. During 2014, it continued with energy efficient upgrades at its French, Hungarian, Polish, Swiss, and UK plants.

These include consumption monitoring systems, LEDs for workshop lighting, new heating systems, and outdoor energy-saving tower lighting. The monitoring is important because it helps Bombardier focus effort, and provides measured proof of progress.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

A Definitive List of the Business Benefits of Cloud Computing ? Part 4

Lowers cost of analytics

Big data and business intelligence (BI) have become the bywords in the current global economy. As consumers today browse, buy, communicate, use their gadgets, and interact on social networks, they leave in their trail a whole lot of data that can serve as a goldmine of information organisations can glean from. With such information at the disposal of or easily obtainable by businesses, you can expect that big data solutions will be at the forefront of these organisations’ efforts to create value for the customer and gain advantage over competitors.

Research firm Gartner’s latest survey of CIOs which included 2,300 respondents from 44 countries revealed that the three top priority investments for 2012 to 2015 as rated by the CIOs surveyed are Analytics and Business Intelligence, Mobile Technologies, and Cloud Computing. In addition, Gartner predicts that about $232 million in IT spending until 2016 will be driven by big data. This is a clear indication that the intelligent use of data is going to be a defining factor in most organisations.

Yet while big data offers a lot of growth opportunities for enterprises, there remains a big question on the capability of businesses to leverage on the available data. Do they have the means to deploy the required storage, computing resources, and analytical software needed to capture value from the rapidly increasing torrent of data?

Without the appropriate analytics and BI tools, raw data will remain as it is – a potential source of valuable information but always unutilised. Only when they can take the time, complexity and expense out of processing huge datasets obtained from customers, employees, consumers in general, and sensor-embedded products can businesses hope to fully harness the power of information.

So where does the cloud fit into all these?

Access to analytics and BI solutions have all too often been limited to large corporations, and within these organisations, a few business analysts and key executives. But that could quickly become a thing of the past because the cloud can now provide exactly what big data analytics requires – the ability to draw on large amounts of data and massive computing power – at a fraction of the cost and complexity these resources once entailed.

At their end, cloud service providers already deal with the storage, hardware, software, networking and security requirements needed for BI, with the resources available on an on-demand, pay-as-you-go approach. In doing so, they make analytics and access to relevant information simplified, and therefore more ubiquitous in the long run.

As the amount of data continues to grow exponentially on a daily basis, sophisticated analytics will be a priority IT technology across all industries, with organisations scrambling to find impactful insights from big data. Cloud-based services ensure that both small and large companies can benefit from the significantly reduced costs of BI solutions as well as the quick delivery of information, allowing for precise and insightful analytics as close to real time as possible.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How an EMS Can Cut Your Carbon Emissions

Your business carbon footprint is directly tied to the efficiency of its energy consumption. From the equipment used in industries, lighting and air conditioning in offices, shopping malls and other commercial buildings, the load used by everyday machines like the coffee makers in the employee breakroom, to hot water boilers in apartment complexes, how much do your processes affect the environment? Standards like the ISO 14001:2015 are being implemented to enable businesses to reduce their impact on the environment, from optimising their energy usage, minimising waste, turning to renewable power sources, all through to preventing pollution and complying with their specific regulatory requirements. How do you handle the volume of data that needs to be obtained and assessed?

Energy management systems come in to enable you to analyse your consumption, identify factors affecting your total energy use – from temperature and humidity conditions, to equipment that is causing spikes, and observe your usage patterns. That way, you can put in measures to minimise wastage while increasing your operational efficiency, reduce your carbon emissions and track your progress all the way. Here, we’ll break down how this is achieved. 

Going Green With An Energy Management System

This is a holistic approach aimed at minimising wastage and optimising energy usage. It includes:

Auditing your energy consumption

The first step is really quantifying how much energy you use, which systems are causing unnecessary load, all through to where there are inefficiencies in the facility. Which equipment has the largest impact on your bill? An energy management system allows you to view it all from one dashboard, such as with the ecoVaro EMS that takes you down to the sub-meter level.

Here, you get real-time data that is collected by the ecoVaro loggers – from electricity use, gas, water, temperature, solar power, humidity, air pressure – the readings can all be monitored. This is done 24/7, and the consumption feeds are recorded. Moreover, ecoVaro pulse data is collected every 15 minutes – which is particularly important when it comes to analysing trends over a time period, be it daily, weekly or monthly. 

Data is only useful if it can be properly analysed, right? So instead of just bombarding you with spreadsheets of numbers, the EMS displays the records into graphs and charts that are easy to comprehend – all from the same interactive interface. So, whether you’re the energy manager in the facility, or you want reports that can be shared with the CFO, owners of the business, or even staff themselves to enable them to understand the energy saving policies that you will put in place – you will be able to carry this out. 

ecoVaro gives you different ways to analyse the data from the readings that have been recommended. For instance, the heat mapping from the interface allows you to see the building’s energy use during different periods at a glance. The site-by-site analysis in particular enables the building or energy manager to assess each individual premises, from checking which block in the school is causing the energy bills to surge, the facility whose performance is falling behind, all through to the office building with the highest carbon footprint. In fact, the carbon and sustainability reports from ecoVaro EMS enables you to see the impact that your operations have. You even get to compare tariffs from the different energy suppliers, that way you can go with the option that is most suited to your situation.

Setting a baseline for your operations

This is essentially a “before/after checkpoint” that you will use to compare the effectiveness of subsequent measures that you will undertake. After making modifications to the systems in your business, you will want a clear picture of whether the new measures are actually benefiting your operations and optimising your energy efficiency, or whether they are deteriorating the performance further. The energy baseline will be critical in analysing your progress. 

Reports like the CUSUM (cumulative sum) charts on ecoVaro show you the energy performance, be it of a boiler in a factory, office building, or chain of hotels – over a set period of time. You can then compare this to the baseline, which will show you if the changes you will implement will make you savings. The heatmaps also come in handy here, showing you the energy consumption at each meter, whether it is low, medium or high compared to the baseline that has been set. The heatmaps give a quick visual to analyse resource usage.  

Creating energy targets

After understanding your energy consumption and seeing how it impacts your business, next is mapping out short- and long-term goals that you want to attain to optimise your usage and reduce your carbon footprint. 

For instance, short-term targets can include the likes of decreasing the night-time lighting load, and adjusting HVAC uptime depending on the level of activity in your business premises for the different hours of the day. 

For the long-term targets, these include setting a specific percentage average kWh reduction for the different industrial sites or buildings under your management; lowering the demand kW throughout the building by a specific range year-on-year; as well as the percentage with which you want the carbon emissions decreased annually. 

Cost efficiency also factors in. For instance, entering your current tariffs into the conversion factoring dashboard on ecoVaro will show you how your consumption translates to the bills that you receive – and even shows you what you stand to save by negotiating for new energy contracts with your utility firm.

Identifying initiatives and implementing energy saving programs

These are geared towards improving your energy efficiency and reducing your carbon footprint. They vary from one industry to the next. For instance, these can include:

Getting motion/occupancy detectors and automatic dimmers installed in the facility

These are lighting controls that enable you to save money and energy by automatically turning the lights off when they are not required (people have left the room), and reducing the light levels for those cases where full-on brightness is not needed. For instance, the dimmer controls enable variable indoor lighting, reducing the wattage and output when dimming the lightbulbs, saving energy in the process. These can be manual, or operated with sensors or timers. 

Motion sensors on the other hand will automatically turn on the lights after they detect motion, then after a short while turn them off – they are typically used for utility and outdoor security lighting. There are also occupancy sensors used in rooms, which turn on the lights when they detect indoor activity, then turn them off or reduce the light output when the particular space is unoccupied. 

Switching to energy-efficient light fixtures such as CFL or LED bulbs

Lighting costs are a major contributor to the energy bills being footed by the business. What kind of systems do you have set up?

Incandescent bulbs are rapidly being phased out due to their inefficiencies. They work by a wire tungsten filament getting heated until it glows – a process that sees almost 90% of its energy being released as heat, instead of light. In addition, with an average lifespan of just 1,500 hours, there is the need for better alternatives – and they have already been around for over a decade: CFL and LED bulbs, which save on energy and have far less carbon emissions. 

Compact fluorescent light bulbs (CFLs) light up when an electric current going through a tube with argon and trace mercury gases generates ultraviolet light, stimulating the fluorescent coating that’s on the inside of the tube, which in turn produces light. As such, a 15-watt CFL will have about the same light output as a 60-watt incandescent bulb. This makes them approximately 4 times more efficient compared to the incandescent bulbs, with a lifespan of 10,000-15,000 hours. This translates into fewer replacements and greater energy savings. However, there are still concerns about the mercury that is in the CFLs, though it is still in small quantities – basically smaller than the tip of your pencil. In addition, the CFLS aren’t; dimmable. They are usually used as a replacement for incandescent bulbs before completely switching to the more efficient LEDs.

Light-emitting diode bulbs (LEDs) Take things a notch higher. Here, electrons moving through a semiconductor emit the light, and you can get the LEDs for visible light, ultra-violet, and infrared spectrums. Here, the lifespan is 25,000–35,000 hours, which is more than double that of CFLs, and leagues beyond the standard incandescent bulb. Moreover, with a 16.5W LED bulb you’ll be getting the same lighting as a 20W CFL, or a 75W incandescent bulb. 

You will notice that when you touch LEDs, they feel cool, and this is because less energy is getting converted into heat. With the energy efficient bulbs, you won’t have to run your AC harder during those hot months, further adding to your cost savings. You can be able to see such consumption trends over the months through the energy management system, getting to the root cause of the problem. For instance, seeing the changing trends in the AC energy consumption over different weeks will enable you to assess what is causing it to be pushed harder, and address the root cause of the problem. 

Acquiring energy-efficient office equipment

This is broad, with the changes being made here depending on your particular niche. Take printers for instance. Simply going for printers with sleep and automatic shut-off modes will ensure that the units are not consuming energy when they are not in use. The same case applies to copier machines. Energy saving surge protectors on the other hand are beneficial for allowing you to “unplug” multiple devices that use standby power even when switched off – what’s usually called “vampire power” or “phantom energy“. 

The need for energy savings cuts across the board, from the computers and monitors used, to the coffee makers and kettles. For instance, working with an electric kettle to heat water for tea beats using a microwave or stove. Go further by opting for a kettle that allows you to set the particular temperature you want for the water – since you don’t really need the water for tea to be boiling hot for the tea to properly steep. Taking such steps further contributes to your business’ efforts to go green and reduce your carbon footprint. 

Turning to renewable energy sources

Switching to renewable sources to power your operations will simultaneously reduce your energy bills and cut your carbon emissions. From solar panels to wind turbines and the like, they are cleaner sources of energy, and the installations that you go with will depend on your kind of business. Moreover, this will protect you from the fluctuations in energy prices, since the bills are affected by the availability of fuel, electricity demand, costs that go into generating and distributing it – all of which end up hitting your business in the long run. On the other hand, going off the grid with your own supply of power protects you from this. In fact, if you end up producing surplus energy, you can sell it back to the grid, earning your business extra revenue. 

Sure, the upfront costs of setting up the systems will take a sizable chunk out of your budget, but the savings allow you to recoup the costs over time. In addition, there will be savings from the incentives being provided by the government, such as tax rebates and grants. These are the likes of the Solar PV Grant from SEAI (Sustainable Energy Authority of Ireland) which is at €900 per kWp, capped at €2400 for each business. Funding is available for homes, community programs and commercial buildings such as  Collinstown Park School that was able to slash their lighting costs by a whopping 90% after securing 50% of the funding for their energy upgrade project from SEAI. The ecoVaro EMS comes with support for solar power installations in its firmware, that way you can continue assessing the changes that your solar power system will bring to your overall energy usage.

Spread awareness

You should also carry out energy conservation training for your staff. The reports generated by the EMS will make it easy for them to get a picture of their energy consumption trends, and the effects that it has on both the performance of the company, and the carbon footprint as a whole. It also gives them more awareness of the impact that they each have at an individual level. 

Assessing Key Performance Indicators

The energy analytics tools from the EMS will show you whether you are actually meeting your goals. Since it works with the different metered connections, from getting electricity and temperature readings, checking radiation levels, humidity data all through to gas meters, you will be able to assess the progress that your business is making across the board. 

For ecoVaro in particular, the performance of your systems can be seen through reports like Consumption Charts – from the different offices, tenants and equipment energy usage, peak -and off-peak data, as well as Regression Charts that allow you to compare building’s actual energy consumption to its expected performance, and how they are affected by variables such as temperature. 

With the site-by-site data and the monitoring being down to the sub-meter level, you will be able to identify an issue when it crops up and narrow it down to the specific instant and location where it occurred. This enables you to address the problem quicker.   

Conducting a compliance audit

A comprehensive audit can then be undertaken to ensure that your company meets internationally-recognized standards that have been stipulated regarding implementing energy management systems and enhancing the energy efficiency of your operations. The compliance audits are carried out by certified auditors.

Through the EMS, you are able to position your business appropriately to meet the standards for your particular niche, measuring and observing the performance of energy-saving projects that have been implemented. This extends to acquiring and presenting data that will be used to show the business’s compliance to industry regulations and obtain the relevant certification. You are able to report on your carbon footprint, and verify it. This information can also be disseminated amongst your employees and customers, raising awareness about your business green initiatives, boosting your brand in the process.

Systems Integration as a means to cost reduction

System integration in an organisation refers to a process whereby two or more separate systems are brought together for the purpose of pooling the value in the separate systems into one main system. A key component of process consolidation within any organisation is the utilisation of IT as a means to achieve this end. As such, system integration as a means to cost reduction offers organisations the opportunity to adopt and implement lean principles with the attendant benefits. The implementation of lean techniques requires an adherence to stated methods to facilitate the elimination of wastage in the production of goods and services. In summary, the lean philosophy seeks to optimise the speed of good and service production, through the elimination of waste.

While analysing some of the traditional sources of waste in organisational activities, things like overproduction, inventory, underutilised ideas, transmission of information and ideas, transportation of people and material, time wastage and over-processing stand out. The fact is that companies can eliminate a significant portion of waste through the utilisation of IT to consolidate processes within their organisation.

Adopting lean principles calls for the identification of all of the steps in the company value stream for each product family for the purpose of the eliminating the steps that do not create any value. In other words, this step calls for the elimination of redundant steps in the process flow. This is exactly what the utilisation of IT to consolidate processes offers a company. For instance, the adoption of a central cloud system across a large organisation with several facilities could increase efficiencies in that company. Such a company would drastically reduce the redundancies that used to exist in the different facilities, eliminate the instances of hardware and software purchase, maintenance and upgrade, modernise quality assurances processes and identify further opportunities for improvement.

Perhaps, from the company’s point of view, and from the perspective of lean process implementation, the most important factor is?the effect it has?on the bottom line.’reducing the number of hardware, eliminating the need for maintaining and upgrading hardware, removing the necessity for software purchase and upgrade across facilities also contributes to a significant reduction in operational costs.?This reduction in the cost of operations leads to a corresponding increase in the profit margin of the company.

Applying system integration as a means to cost reduction can also lead to the reduction in the number of people needed to operate the previous systems that have been integrated into one primary unit. Usually, companies must hire people with specialised knowledge to operate and maintain the various systems. Such employees must also receive special training and frequent ongoing education to constantly stay informed of the latest trends in process management. With the integration of the system, the number of people needed to maintain the central system will be significantly reduced, also improving the security of information and other company trade secrets.

Based on an analysis of the specific needs that exist in a particular company environment, a system integration method that is peculiar to the needs of that organisation will be worked out. Some companies may find it more cost-effective to use the services of independent cloud service providers. Others with more resources and facilities may decide to set up their own cloud service systems. Often, private cloud service system capabilities far exceed the requirements of the initiating company, meaning that they could decide to “sell” the extra “space” on their cloud network to other interested parties.

A company that fully applies the lean principles towards the integration of its systems will be able to take on additional tasks as a result of the system consolidation. This leads to an increase in performance, and more efficiency due to the seamless syncing of information in a timely and uniform manner.

Companies have to combine a top-down and a bottom-up approach towards their system integration methods. A top-down approach simply utilises the overall system structure that is already in place as a starting point, or as a foundation. The bottom-up approach seeks to design new systems for integration into the system. Other methods of system integration include the vertical, star and horizontal integration methods. In the horizontal method, a specified subsystem is used as an interface for communication between other subsystems. For the star system integration method, the subsystems are connected to the system in a manner that resembles the depiction of a star; hence, the name. Vertical integration refers to the method of the integration of subsystems based on an analysis of their functionality.

The key to successful system integration for the purpose of cost reduction is to take a manual approach towards identifying the various applicable lean principles, with respect to the system integration process. For instance, when value has been specified, it becomes easier to identify value streams. The other process of removing unnecessary or redundant steps will be easier to follow when the whole project is viewed from the whole, rather than’the part. Creating an integrated system needs some?patience?in order to work out kinks and achieve the desired perfect value that creates no waste.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?