How Bombardier Inc. scored a Bulls Eye

When travelling anywhere in the world on land, sea or air, chances are, you will travel courtesy of something made by aerospace and transportation company Bombardier based in Montreal, Canada. In 2009, it set itself the goal of carbon neutrality by 2020. In other words, it hoped to remove as much carbon dioxide from the atmosphere as it was putting in.

By 2012, Bombardier concluded it was not going to become carbon neutral by 2020 at its current rate of progress. It discounted purchasing carbon offsets because it believed it would serve its interests better by introducing new energy-saving products to market faster. That way, it would achieve its objectives vicariously through the decisions of its customers. But that was not all that forward-thinking Bombardier did. It also set itself the following inward-facing objectives:

  • Reduce carbon footprint through efficient use of energy and less emissions
  • Involve the Bombardier workforce to raise awareness of behaving responsibly
  • Implement sustainable initiatives to further reduce the company carbon footprint

Specific Examples

At its Wichita site, Bombardier (a) fitted a white roof and insulation reducing summer energy consumption by 40%, (b) added an energy recovery wheel to balance air circulation, and (c) introduced skylights with integrated controllers to lower energy consumption by lighting.

At Mirabel, it enhanced the flue-gas management system by adding a pressure differential damper.

At Belfast, Bombardier (a) optimised HVAC systems to reduce pressure on chilling and air-handling plants, (b) installed solar panels on the roof, and (c) obtained approval for a waste-to-energy plant that will convert 120,000 tonnes of non-recyclable waste material annually.

By the end of 2013, Bombardier had already beaten its immediate targets by:

  • Reducing energy consumption by 11% against 2009
  • Reducing greenhouse gas emission by 23% against 2009
  • Reducing water consumption by 6% against 2012

Future Plans

Bombardier will never stop striving to reach its goal of carbon neutrality by 2020. It has a number of other projects in the pipeline waiting for scarce resources to fund them. During 2014, it continued with energy efficient upgrades at its French, Hungarian, Polish, Swiss, and UK plants.

These include consumption monitoring systems, LEDs for workshop lighting, new heating systems, and outdoor energy-saving tower lighting. The monitoring is important because it helps Bombardier focus effort, and provides measured proof of progress.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

What Sub-Metering did for Nissan in Tennessee

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ?We’ve already squeezed the lemon dry,? they seemed to say. ?What makes you think there?s more to come??

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ?The only disadvantage of sub-metering is that now we can’t imagine doing without it.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Data Replication

Medical Data Form

These days, not many companies can continue to operate once their entire computer system goes down. All the information needed in daily operations are stored in databases while the interfaces that make use of them all come in the form of software applications.

Software applications can be rapidly reinstalled and configured for as long as the necessary programs are available. Data, however, cannot be reconstructed as quickly even with hard copies available. It is therefore necessary to store your data in a replicated setup so that when one section goes down, operations can proceed without interruption.

For instance, if a category 5 hurricane renders your main office useless, you can simply rent workstations elsewhere, connect to the Internet and continue with your usual transactions for as long as data is readily accessible.

So how do we ensure the accessibility and reliability of your data? Here’s what we’ll do:

  • Activate data replication on your database management system. If your DBMS does not support replication, we’ll migrate all your data to one that does.
  • If absolutely necessary, we can allow modernised systems to run parallel to your legacy systems and prepare both for full modernisation when you’re ready.
  • Implement fail-over technologies where applicable to provide for automatic switching to a backup data server or network from one that has just failed.

We can also assist you with the following:

Transformation to a process based organisation

Today’s global marketplace rewards nimble organisations that learn and reinvent themselves faster than their competition. Employees at all levels of these organisations see themselves as members of teams responsible for specific business processes, with performance measures tied to the success of the enterprise. As team members, they are “owners” of the process (or processes) to which they are assigned. They are responsible for both the day to day functioning of their process(s), and also for continuously seeking sustainable process improvements.

Transforming a traditionally designed “top down control” enterprise to a process-based organisation built around empowered teams actively engaged in business process re-engineering (BPR) has proven more difficult than many corporate leaders have expected. Poorly planned transformation efforts have resulted in both serious impacts to the bottom line, and even more serious damage to the organisation’s fabric of trust and confidence in leadership.

Tomislav Hernaus, in a publication titled “Generic Process Transformation Model: Transition to Process-based Organisation” has presented an overview of existing approaches to organisational transformation. From the sources reviewed, Heraus has synthesised a set of steps that collectively represent a framework for planning a successful organisational change effort. Key elements identified by Hernaus include:

Strategic Analysis:

The essential first step in any transformation effort must be development of a clear and practical vision of a future organisation that will be able to profitably compete under anticipated market conditions. That vision must be expected to flex and adjust as understanding of future market conditions change, but it must always be stated in terms that all organisational members can understand.

Identifying Core Business Processes:

With the strategic vision for the organisation in mind, the next step is to define the core business processes necessary for the future organisation to function. These processes may exist across the legacy organisation’s organisational structures.

Designing around Core Processes:

The next step is development of a schematic representation of the “end state” company, organised around the Core Business Processes defined in the previous step.

Transitional Organisational Forms/ Developing Support Systems:

In his transformation model, Hernaus recognises that information management systems designed for the legacy organisation may not be able to meet the needs of the process management teams in the new organisation. Interim management structures (that can function with currently available IT system outputs) may be required to allow IT professionals time to redesign the organisation’s information management system to be flexible enough to meet changing team needs.

Creating Awareness, Understanding, and Acceptance of the Process-based Organisation:

Starting immediately after the completion of the Strategic Analysis process described above, management must devote sufficient resources to assure that all organisation members, especially key managers, have a full understanding of how a process-based organisation functions. In addition, data based process management skills need to be provided to future process team members. It is not enough to schedule communication and training activities, and check them off the list as they are completed. It is critical that management set behavioural criteria for communication and training efforts that allow objective evaluation of the results of these efforts. Management must commit to continuing essential communication and training efforts until success criteria are achieved. During this effort, it may be determined that some members of the organisation are unlikely to ever accept the new roles they will be required to assume in a process-based organization. Replacement of these individuals should be seen as both an organisational necessity and a kindness to the employees affected.

Implementation of Process Teams:

After the completion of required training AND the completion of required IT system changes, process teams can be formally rolled out in a planned sequence. Providing new teams with part time support by qualified facilitators during the firsts weeks after start-up can pay valuable long term dividends.

Team Skill Development and Continuous Process Improvement:

Providing resources for on-going skill development and for providing timely and meaningful recognition of process team successes are two keys for success in a process-based organisation. Qualified individuals with responsibility for providing training and recognition must be clearly identified and provided with sufficient budgetary resources.

The Hernaus model for transformation to a process based organisation is both well thought out and clear. His paper provides an ample resource of references for further study.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?