Disadvantages of Spreadsheets – Obstacles to Compliance in the Healthcare Industry

Most of the regulatory compliance issues we talked about concerning spreadsheets have been related to financial data. But there are other kinds of data that are stored in spreadsheets which may also cause regulatory problems in the future.

In the US, a legislation known as HIPAA or Health Insurance Portability and Accountability Act is changing the way health care establishments and practitioners handle patient records. The HIPAA Privacy Rule is aimed at protecting the privacy of individually identifiable health information a.k.a. protected health information (PHI).

Examples of PHI include common identifiers like a patient’s name, address, Social Security Number, and so on, which can be used to identify the patient. HIPAA covers a wide range of health care organisations and service providers, including: health plan payers, health care clearing houses, hospitals, doctors, dentists, etc.

To protect the confidentiality, integrity, and availability of PHI, covered entities are required to implement technical policies such as access controls, authentication, and audit controls. These can easily be implemented on server-based systems.

Sad to say, many health care organisations who have started storing data electronically still rely on spreadsheet-based systems. Those policies are hard to implement in spreadsheet-based systems, where files are handled by end-users who are overloaded with their main line of work (i.e. health care) and have very little concern for data security.

In some of these systems, spreadsheet files containing PHI may have multiple versions in different workstations. Chances are, none of these files have any access control or user authentication mechanism whatsoever. Thus, changes can easily be made without proper documentation as to who carried out the changes.

And because the files are normally easily accessible, unauthorised disclosures – whether done intentionally or accidentally – will always be a lingering threat. Remember that HIPAA covered entities who are caught disclosing PHI can be fined from $50,000 up to $500,000 plus jail time.

But that’s not all. Through the HITECH Act of 2009, business associates of covered entities will now have to comply with HIPAA standards as well. Business associates are those companies who are performing functions and services for covered entities.

Examples of business associates are accounting firms, law firms, consultants, and so on. They automatically need to comply with the standards the moment they too deal with PHI.

 

More Spreadsheet Blogs

 

Spreadsheet Risks in Banks

 

Top 10 Disadvantages of Spreadsheets

 

Disadvantages of Spreadsheets – obstacles to compliance in the Healthcare Industry

 

How Internal Auditors can win the War against Spreadsheet Fraud

 

Spreadsheet Reporting – No Room in your company in an age of Business Intelligence

 

Still looking for a Way to Consolidate Excel Spreadsheets?

 

Disadvantages of Spreadsheets

 

Spreadsheet woes – ill equipped for an Agile Business Environment

 

Spreadsheet Fraud

 

Spreadsheet Woes – Limited features for easy adoption of a control framework

 

Spreadsheet woes – Burden in SOX Compliance and other Regulations

 

Spreadsheet Risk Issues

 

Server Application Solutions – Don’t let Spreadsheets hold your Business back

 

Why Spreadsheets can send the pillars of Solvency II crashing down

?

Advert-Book-UK

amazon.co.uk

?

Advert-Book-USA

amazon.com

 

Check our similar posts

Denizon’s Business Continuity Services

Disruptions to business operations can be as catastrophic as a Hurricane Katrina or a 9/11 or as relatively trivial as a minor power outage or a planned shutdown. What ever the gravity, scope and duration the disruption has, your company should be able to handle each situation so that you can declare “business as usual” and really mean it. (more…)

The Connection Between Six Sigma and CRM

Six Sigma is an industrial business strategy directed at improving the quality of process outputs by eliminating errors and system variables. The end objective is to achieve a state where 99.99966% of events are likely to be defect free. This would yield a statistical rating of Sigma 6 hence the name.

The process itself is thankfully more user-friendly. It presents a model for evaluating and improving customer relationships based on data provided by an automated customer relations management (CRM) system. However in the nature of human interaction we doubt the 99.99966% is practically achievable.

Six Sigma Fundamentals

The basic tenets of the business doctrine and the features that set off are generally accepted to be the following:

  1. Continuous improvement is essential for success
  1. Business processes can be measured and improved
  1. Top down commitment is fundamental to sustained improvement
  1. Claims of progress must be quantifiable and yield financial benefits
  1. Management must lead with enthusiasm and passion
  1. Verifiable data is a non-negotiable (no guessing)

Steps Towards the Goal

The five basic steps in Six Sigma are define the system, measure key aspects, analyse the relevant data, improve the method, and control the process to sustain improvements. There are a number of variations to this DMAIC model, however it serves the purpose of this article. To create a bridge across to customer relationships management let us assume our CRM data has thrown out a report that average service times in our fast food chicken outlets are as follows.

<2 Minutes 3 to 8 Minutes 9 to 10 Minutes >10 Minutes
45% 30% 20% 5%
Table: Servicing Tickets in Chippy?s Chicken Caf?s

Using DMAIC to unravel the reasons behind this might proceed as follows

  • Define the system in order to understand the process. How are customers prioritised up front, and does the back of store follow suit?
  • Break the system up into manageable process chunks. How long should each take on average? Where are bottlenecks most likely to occur?
  • Analyse the ticket servicing data by store, by time of day, by time of week and by season. Does the type of food ordered have a bearing?
  • Examine all these variables carefully. Should there for example be separate queues for fast and slower orders, are there some recipes needing rejigging
  • Set a goal of 90% of tickets serviced within 8 minutes. Monitor progress carefully. Relate this to individual store profitability. Provide recognition.

Conclusion

A symbiotic relation between CRM and a process improvement system can provide a powerful vehicle for evidencing customer care and providing feedback through measurable results. Denizon has contributed to many strategically important systems.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

Ready to work with Denizon?