FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Energy efficiency- succeed and benefit

Energy is neither created nor destroyed; it is only transformed. This being the law of conservation of energy, and given that the process of transforming energy is inefficient resulting in loss of usable energy in the process of transforming one form of energy into another form, Energy Efficiency finds a home.
Talking of Energy efficiency, think of how much useful energy can be obtained from a system or a particular technology. It is also about the use of technology that requires a lesser amount of energy to carry out the same task.

Energy efficiency is the responsibility of both demand side and supply side. Supply-side energy efficiency refers to a set of actions taken to ensure efficiency through the electricity supply chain. Supply side efficiency measures are about efficiency in electricity generation; be it operation and maintenance of existing equipment or upgrading existing equipment with state-of-the-art energy-efficient generating equipment.

The demand side energy efficiency on the other hand refers to the actions taken to use less/demand less energy. Think of less energy usage in relation to improvement of energy efficiency in buildings, solar water heaters, energy efficient lighting systems such as Compact Fluorescent Lamps, conducting energy audits to identify potential energy saving opportunities, efficient water heating systems and the list is endless.

Success of energy efficiency is a win ? win to YOU-ME-US – the energy consumers, to THEM the energy producers and suppliers and to our precious ENVIRONMENT.
Gain to energy suppliers: – Less energy usage and better energy usage patterns among consumers consequently reduces the customer load which reduces losses on the supply side. Less energy loss creates capacity on the system to serve more customers.

Gain to you-me-us: – Less energy usage and better energy usage patterns Benefits the customer through reduced Electricity bills / $ savings through lower bills.

Benefits to the environment: – Usage of less energy reduces use of fossil fuels, hence reduction in GHG emissions hence conserving our environment. Companies look at means to make rational use of their least efficient generating equipment. The objective is to improve the operation and maintenance of existing equipment or upgrade it with state-of-the-art energy-efficient technologies. Some companies have on-site electricity generation alternatives and thus tend to consider the supply side in addition to demand-side energy efficiency.

2015 ESOS Guidelines Chapter 6 – Role of Lead Assessor

The primary role of the lead assessor is to make sure the enterprise?s assessment meets ESOS requirements. Their contribution is mandatory, with the only exception being where 100% of energy consumption received attention in an ISO 50001 that forms the basis of the ESOS report.

How to Find a Lead Assessor

An enterprise subject to ESOS must negotiate with a lead assessor with the necessary specialisms from one of the panels approved by the UK government. This can be a person within the organisation or an third party. If independent, then only one director of the enterprise need countersign the assessment report. If an employee, then two signatures are necessary. Before reaching a decision, consider

  • Whether the person has auditing experience in the sector
  • Whether they are familiar with the technology and the processes
  • Whether they have experience of auditing against a standard

The choice rests on the enterprise itself. The lead assessor performs the appointed role.

The Lead Assessor?s Role

The Lead Assessor?s main job is reviewing an ESOS assessment prepared by others against the standard, and deciding whether it meets the requirements. They may also contribute towards it. Typically their role includes:

  • Checking the calculation for total energy consumption across the entire enterprise
  • Reviewing the process whereby the 90% areas of significant consumption were identified
  • Confirming that certifications are in place for all alternate routes to compliance chosen
  • Checking that the audit reports meet the minimum criteria laid down by the ESOS system

Note: A lead assessor may partly prepare the assessment themselves, or simply verify that others did it correctly.

In the former instance a lead assessor might

  • Determine energy use profiles
  • Identify savings opportunities
  • Calculate savings measures
  • Present audit findings
  • Determine future methodology
  • Define sampling methods
  • Develop audit timetables
  • Establish site visit programs
  • Assemble ESOS information pack

Core Enterprise Responsibilities

The enterprise cannot absolve itself from responsibility for good governance. Accordingly, it remains liable for

  • Ensuring compliance with ESOS requirements
  • Selecting and appointing the lead assessor
  • Drawing attention to previous audit work
  • Agreeing with what the lead assessor does
  • Requesting directors to sign the assessment

The Environment Agency does not provide assessment templates as it believes this reduces the administrative burden on the enterprises it serves.

Disaster Recovery

Because information technology is now integrated in most businesses, a business continuity plan (BCP) cannot be complete without a corresponding disaster recovery plan (DRP). While a BCP encompasses everything needed – personnel, facilities, communications, processes and IT infrastructure – for a continuous delivery of products and services, a DRP is more focused on the IT aspects of the plan.

If you’re still not sure how big an impact loss of data can have, it’s time you pondered on the survival statistics of companies that incurred data losses after getting hit by a major disaster: 46% never recovered and 51% eventually folded after only two years.

Realising how damaging data loss can be to their entire business, most large enterprises allocate no less than 2% of their IT budget to disaster recovery planning. Those with more sensitive data apportion twice more than that.

A sound disaster recovery plan is hinged on the principles of business continuity. As such, our DRP (Disaster Recovery Plan) blueprints are aimed at getting your IT system up and running in no time. Here’s what we can do for you:

  • Since the number one turn-off against BCPs and DRPs are their price tags, we’ll make a thorough and realistic assessment of possible risks to determine what specific methods need to be applied to your organisation and make sure you don’t spend more than you should.
  • Provide an option for virtualisation to enjoy substantial savings on disaster recovery costs.
  • Provide various backup options and suggest schedules and practices most suitable for your daily transactions.
  • Offer data replication to help you achieve business continuity with the shortest allowable downtime.
  • Refer to your overall BCP to determine your organisation’s critical functions, services, and products as well as their respective priority rankings to know what corresponding IT processes need to be in place first.
  • Implement IT Security to your system to reduce the risks associated with malware and hackers.
  • Introduce best practices to make future disaster recovery efforts as seamless as possible.

We can also assist you with the following:

Ready to work with Denizon?