Eliminate The Complexities Of Your IT System

There may have been times when you actually spent on the right IT system but didn’t have adequate expertise to instil the appropriate learning curve for your end users. Oftentimes, users find a new system too complicated and end up spending more hours familiarising with intricate processes than is economically acceptable.

There are also applications that are just too inherently sophisticated that, even after the period of familiarisation, a lot of time is still spent managing or even just using them. Therefore, at the end of each day, your administrators and users aren’t able to complete much business-related tasks.

The first scenario can be solved by providing adequate training and tech support. The second might require enhancements or, in extreme cases, an overhaul of the technology itself.

For instance, consider what happens right after the conclusion of a merger and acquisition (M&A). CIOs from both sides and their teams will have to work hard to bring disparate technologies together. The objective is to hide these complexities and allow customers, managers, suppliers and other stakeholders to get hold of relevant information with as little disruption as possible.

One solution would be to implement Data Warehousing, OLAP, and Business Intelligence (BI) technologies to handle extremely massive data and present them into usable information.

These are just some of the many scenarios where you’ll need our expertise to eliminate the complexities that can slow your operations down.

Here are some of the solutions and benefits we can offer when we start working with you:

  • Consolidated hardware, storage, applications, databases, and processes for easier and more efficient management at a fraction of the usual cost.
  • BI (Business Intelligence) technologies for improved quality of service and for your people, particularly your managers, to focus on making decisions and not just filtering out data.
  • Training, workshops, and discussions that provide a clear presentation of the inter-dependencies among applications, infrastructure, and the business processes they support.
  • Increased automation of various processes resulting in shorter administration time. This will free your administrators and allow them to shift their attention to innovative endeavours.

Find out how we can increase your efficiency even more:

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Green Business!

Carbon emissions reduction has evolved beyond simply good citizenship to being a business tool. Implementing ?green? initiatives is now a competitive weapon which defines real business opportunities and bottom line savings that can contribute significant financial value to the organisation while meeting demanding customer requirements for sustainable and low-carbon products.

Energy efficiency is a low cost resource for achieving carbon emissions reduction. Better energy efficiency simply translates to lesser carbon emissions and less energy usage which translates into saved costs.

Reduction of an organisations carbon footprint is each and everyone?s responsibility. Human activities are the key responsibility for the release of greenhouse gas emissions into the atmosphere. These include usage of electricity generated from fossil fuel, heating or driving.

At the corporate level, various measures can be instigated to increase energy efficiency. Some of these can be, having zone lighting with sensors to minimise unnecessary office lighting, timers on large IT equipment, promoting energy efficient behaviour in the office, asking staff to switch off and unplug appliances when not in use and minimising staff travel.
At the individual level; it is the small habits that count; cultivating the habit of switching off unnecessary lights, plugging out appliances that are not in use, using video conferencing or online chatting instead of having to travel to meetings, using public transport instead of taking a taxi/ personal car and using energy efficient cars.

All these initiatives assist organisations in their corporate social responsibility reports and play a role in sustainability rankings which is instrumental to customers who are increasingly considering sustainability rankings in investment decisions, while achieving the goal of cost reduction internally.

What Heijunka is & How it Smooths Call Centre Production

The Japanese word Heijunka, pronounced hi-JUNE-kuh means ?levelling? in the sense of balancing workflows. It helps lean organizations shift priorities in the face of fluctuating customer demand. The goal is to have the entire operation working at the same pace throughout, by continuously adjusting the balance between predictability, flexibility, and stability to level out demand.

Henry Ford turned the American motor manufacturing industry upside down by mass-producing his iconic black motor cars on two separate production lines. In this photograph, body shells manufactured upstairs come down a ramp and drop onto a procession of cars almost ready to roll in 1913.

Smoothing Production in the Call Centre Industry

Call Centres work best in small teams, each with a supervisor to take over complex conversations. In the past, these tended to operate in silos with each group in semi-isolation representing a different set of clients. Calls came through to operators the instant the previous ones concluded. By the law of averages, inevitably one had more workload than the rest at a particular point in time as per this example.

Modern telecoms technology makes it possible to switch incoming lines to different call centre teams, provided these are multi-skilled. A central operator controls this manually by observing imbalanced workflows on a visual system called a Heijunka Box. The following example comes from a different industry, and highlights how eight teams share uneven demand for six products.

This departure from building handmade automobiles allowed Henry to move his workforce around to eliminate bottlenecks. For example, if rolls of seat leather arrived late he could send extra hands upstairs to speed up the work there, while simultaneously slowing chassis production. Ford had the further advantage of a virtual monopoly in the affordable car market. He made his cars at the rate that suited him best, with waiting lists extending for months.

A Modern, More Flexible Approach

Forces of open competition and the Six Sigma drive for as-close-to-zero defects dictates a more flexible approach, as embodied in this image published by the Six Sigma organisation. This represents an ideal state. In reality, one force usually has greater influence, for example decreasing stability enforces a more flexible approach.

Years ago, Japanese car manufacturer Toyota moved away from batching in favour of a more customer-centric approach, whereby buyers could customise orders from options held in stock for different variations of the same basic model. The most effective approach lies somewhere between Henry Ford?s inflexibility and Toyota?s openness, subject to the circumstances at the moment.

A Worked Factory Example

The following diagram suggests a practical Heijunka application in a factory producing three colours of identical hats. There are two machines for each option, one or both of which may be running. In the event of a large order for say blue hats, the company has the option of shifting some blue raw material to the red and green lines so to have the entire operation working at a similar rate.

Predictability, Flexibility, and Stability at Call Centre Service

The rate of incoming calls is a moving average characterised by spikes in demand. Since the caller has no knowledge whether high activity advisories are genuine, it is important to service them as quickly as possible. Lean process engineering provides technology to facilitate flexibility. Depending on individual circumstances, each call centre may have its own definition of what constitutes an acceptably stable situation.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?