Spreadsheet Woes – Limited Features For Easy Adoption of a Control Framework

Like it or not, regulations are here to stay and for a company to comply with them, its IT and financial systems will have to be equipped with a suitable control framework. One common stumbling block to such an implementation is a company?s over-reliance on spreadsheets.

Why is it so difficult to adopt controls for a system that’s reliant on spreadsheets? To understand this, let’s pinpoint some of the strongest, most powerful attributes of these User Developed Applications (UDA).

By nature, spreadsheets are the epitome of simplicity: easy to develop, easily accessible and easily altered. All computers in your workplace will most likely have them and everyone in your organization may be sharing them, making their own versions, and storing them in personal folders.

Sad to say though, these strengths are also control weaknesses and constitute the very reasons why spreadsheets require effective risk management.

Easy to develop. Being easy to develop, most spreadsheet systems are created by non-IT users who have limited knowledge on best control practices. Being constantly under time pressure, these ?developers? may also relegate documentation, security, and data verification to the back burner in favour of coming up with a timely report.

Easy to access. Information in a spreadsheet can be opened by practically anyone within the organization?s network. Who accessed what? And when? If anything goes wrong, it would be difficult to identify the culprit, and the failure to pinpoint responsibility for erroneous data could lead to bigger, more costly mistakes.

Easy to alter. Lastly, if the information is easy to access, then it can also be easily altered, consequently making reports more prone to both accidental errors and fraudulent modifications.

The rise of multimillion dollar scandals due to accidental and intentional spreadsheet errors have prompted regulatory bodies to publish guidelines for mitigating spreadsheet-associated risks. These controls include:

  • Change control
  • Version control
  • Access control
  • Input
  • Security and data integrity
  • Documentation
  • Development life cycle
  • Backup and archiving
  • Logic inspection/Testing
  • Segregation of duties/roles, and procedures
  • Analytics

In theory, these controls should be able to bring down risks considerably. However, because of the inherent nature of spreadsheets, such controls are rarely implemented effectively in the real world.

Take for example Security and Data Integrity. One of the most common causes of spreadsheet error is due to ?hardwiring?. This happens when values are inadvertently entered into a formula cell, naturally changing the logic of the spreadsheet.

As a way of control, cell locking can be applied on the formula cells to prevent users without the proper authority from making any changes. However, when reporting deadlines approach drawing spreadsheets to the forefront of data processing, more people are given access rights to the locked cells. Ironically, it is during these crunch times, when errors are most likely to happen.

Because the built-in features of a spreadsheet support none of the controls mentioned above, some companies are tempted to purchase control-enabling programs for spreadsheets just to continue using them for financial reporting. But although these programs can integrate the required controls, you?d still be interacting with the same complex and outdated interface: the spreadsheets.

Thus, these band-aid solutions may not suffice because the root cause of these problems are the spreadsheets themselves.

Learn more about our server application solutions and discover a better way to implement controls.

More Spreadsheet Blogs


Spreadsheet Risks in Banks


Top 10 Disadvantages of Spreadsheets


Disadvantages of Spreadsheets – obstacles to compliance in the Healthcare Industry


How Internal Auditors can win the War against Spreadsheet Fraud


Spreadsheet Reporting – No Room in your company in an age of Business Intelligence


Still looking for a Way to Consolidate Excel Spreadsheets?


Disadvantages of Spreadsheets


Spreadsheet woes – ill equipped for an Agile Business Environment


Spreadsheet Fraud


Spreadsheet Woes – Limited features for easy adoption of a control framework


Spreadsheet woes – Burden in SOX Compliance and other Regulations


Spreadsheet Risk Issues


Server Application Solutions – Don’t let Spreadsheets hold your Business back


Why Spreadsheets can send the pillars of Solvency II crashing down

Advert-Book-UK

amazon.co.uk

Advert-Book-USA

amazon.com

Check our similar posts

How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
When Carrefour Pushed the Right Buttons

Retail giant Carrefour based in Boulogne Billancourt, France is big business in anybody?s numbers. Europe?s #1 retailer opened its first store in 1958 near a crossroads (Carrefour means ?crossroad? in French) and has largely not looked back since then. The slogan for the hypermarket chain with more than 1,500 outlets and close to a half million employees is ?choice and quality for everyone?. Our story begins when Carrefour decided these things belong at home too.

The company implemented a worldwide universal responsibility program firmly anchored on a tripod of goals for environmental, economic and social progress. Its first step was to appoint a five-person project team tasked with liaising with program delegates in all thirty countries in which it operates, and who had responsibility for driving these goals.

The team?s job was to make sure that policies, standards, procedures and key performance areas were common visions throughout Carrefour. By contrast, the local managers? were tasked with aligning these specifics to local conditions in terms of environmental, political and social issues. The project team checked the fit quarterly via video conferences.

The Triple Bottom Line Goals were woven through with Carrefour?s Seven Core Values, namely Freedom, Responsibility, Sharing, Respect, Integrity, Solidarity and Progress. Constant contact was maintained with staff and other stakeholders through ?awareness training? seminars and other dialogues. As the program took hold and flourished, it became evident that the retail giant needed help with managing the constant stream of metrics flowing in.

After reviewing options, Carrefour appointed a software provider to monitor progress against its primary focuses on energy, water, waste, refrigeration, paper, disposable checkout bags, hygiene & quality, management gender parity, disabled people and logistics. This enabled it to track progress online against past performance, and produce meaningful reports.

The Environmental Manager in the Corporate Sustainability Department waxed lyrical when he said, ?We believe that our sustainability strategy and software solution have powerfully improved collaboration, innovation, and overall performance?. He went on to describe how it was helping drive cost down and profitability up, while simultaneously growing brand.

Non-conformance costs can be high and run counter to the imperative to make a profit – while simultaneously ensuring a better world for our children?s children. In Carrefour?s case, having a consultant to measure progress was the key that unblocked the administrative bottleneck. Irish company Ecovaro does this for companies around the world. Click here. Discover what we will do for you.

Energy Cooperation Mechanisms in the EU

While the original mission of the European Union was to bring countries together to prevent future wars, this has spun out into a variety of other cooperative mechanisms its founders may never have dreamed of. Take energy for example, where the European Energy Directive puts energy cooperation mechanisms in place to help member states achieve the collective goal.

This inter-connectivity is essential because countries have different opportunities. For example, some may easily meet their renewable targets with an abundance of suitable rivers, while others may have a more regular supply of sunshine. To capitalise on these opportunities the EU created an internal energy market to make it easier for countries to work together and achieve their goals in cost-effective ways. The three major mechanisms are

  • Joint Projects
  • Statistical Transfers
  • Joint Support Schemes

Joint Projects

The simplest form is where two member states co-fund a power generation, heating or cooling scheme and share the benefits. This could be anything from a hydro project on their common border to co-developing bio-fuel technology. They do not necessarily share the benefits, but they do share the renewable energy credits that flow from it.

An EU country may also enter into a joint project with a non-EU nation, and claim a portion of the credit, provided the project generates electricity and this physically flows into the union.

Statistical Transfers

A statistical transfer occurs when one member state has an abundance of renewable energy opportunities such that it can readily meet its targets, and has surplus credits it wishes to exchange for cash. It ?sells? these through the EU accounting system to a country willing to pay for the assistance.

This aspect of the cooperative mechanism provides an incentive for member states to exceed their targets. It also controls costs, because the receiver has the opportunity to avoid more expensive capital outlays.

Joint Support Schemes

In the case of joint support schemes, two or more member countries combine efforts to encourage renewable energy / heating / cooling systems in their respective territories. This concept is not yet fully explored. It might for example include common feed-in tariffs / premiums or common certificate trading and quota systems.

Conclusion

A common thread runs through these three cooperative mechanisms and there are close interlinks. The question in ecoVaro?s mind is the extent to which the system will evolve from statistical support systems, towards full open engagement.

Ready to work with Denizon?