Becoming Nimble the Agile Project Management Way

In dictionary terms, ?agile? means ?able to move quickly and easily?. In project management terms, the definition is ?project management characterized by division of tasks into short work phases called ?sprints?, with frequent reassessments and adaptation of plans?. This technique is popular in software development but is also useful when rolling out other projects.

Managing the Seven Agile Development Phases

  • Stage 1: Vision. Define the software product in terms of how it will support the company vision and strategy, and what value it will provide the user. Customer satisfaction is of paramount value including accommodating user requirement changes.
  • Stage 2: Product Roadmap. Appoint a product owner responsible for liaising with the customer, business stakeholders and the development team. Task the owner with writing a high-level product description, creating a loose time frame and estimating effort for each phase.
  • Stage 3: Release Plan. Agile always looks ahead towards the benefits that will flow. Once agreed, the Product Road-map becomes the target deadline for delivery. With Vision, Road Map and Release Plan in place the next stage is to divide the project into manageable chunks, which may be parallel or serial.
  • Stage 4: Sprint Plans. Manage each of these phases as individual ?sprints?, with emphasis on speed and meeting targets. Before the development team starts working, make sure it agrees a common goal, identifies requirements and lists the tasks it will perform.
  • Stage 5: Daily Meetings. Meet with the development team each morning for a 15-minute review. Discuss what happened yesterday, identify and celebrate progress, and find a way to resolve or work around roadblocks. The goal is to get to alpha phase quickly. Nice-to-haves can be part of subsequent upgrades.
  • Stage 6: Sprint Review. When the phase of the project is complete, facilitate a sprint review with the team to confirm this. Invite the customer, business stakeholders and development team to a presentation where you demonstrate the project/ project phase that is implemented.
  • Stage 7: Sprint Retrospective. Call the team together again (the next day if possible) for a project review to discuss lessons learned. Focus on achievements and how to do even better next time. Document and implement process changes.

The Seven Agile Development Phases ? Conclusions and Thoughts

The Agile method is an excellent way of motivating project teams, achieving goals and building result-based communities. It is however, not a static system. The product owner must conduct regular, separate reviews with the customer too.

Check our similar posts

Without Desktop Virtualisation, you can’t attain True Business Continuity

Even if you’ve invested on virtualisation, off-site backup, redundancy, data replication, and other related technologies, I?m willing to bet your BC/DR program still lacks an important ingredient. I bet you’ve forgotten about your end users and their desktops.

Picture this. A major disaster strikes your city and brings your entire main site down. No problem. You’ve got all your data backed up on another site. You just need to connect to it and voila! you’ll be back up and running in no time.

Really?

Do you have PCs ready for your employees to use? Do those machines already have the necessary applications for working on your data? If you still have to install them, then that’s going to take a lot of precious time. When your users get a hold of those machines, will they be facing exactly the same interface that they’ve been used to?

If not, more time will be wasted as they try to familiarise themselves. By the time you’re able to declare ?business as usual?, you’ll have lost customer confidence (or even customers themselves), missed business opportunities, and dropped potential earnings.

That’s not going to happen with desktop virtualisation.

The beauty of?virtualisation

Virtualisation in general is a vital component in modern Business Continuity/Disaster Recovery strategies. For instance, by creating multiple copies of virtualised disks and implementing disk redundancy, your operations can continue even if a disk breaks down. Better yet, if you put copies on separate physical servers, then you can likewise continue even if a physical server breaks down.

You can take an even greater step by placing copies of those disks on an entirely separate geographical location so that if a disaster brings your entire main site down, you can still gain access to your data from the other site.

Because you’re essentially just dealing with files and not physical hardware, virtualisation makes the implementation of redundancy less costly, less tedious, greener, and more effective.

But virtualisation, when used for BC/DR, is mostly focused on the server side. As we’ve pointed out earlier in the article, server side BC/DR efforts are not enough. A significant share of business operations are also dependent on the client side.

Desktop virtualisation (DV) is very similar to server virtualisation. It comes with nearly the same kind of benefits too. That means, a virtualised desktop can be copied just like ordinary files. If you have a copy of a desktop, then you can easily use that if the active copy is destroyed.

In fact, if the PC on which the desktop is running becomes incapacitated, you can simply move to another machine, stream or install a copy of the virtualised desktop there, and get back into the action right away. If all your PCs are incapacitated after a disaster, rapid provisioning of your desktops will keep customers and stakeholders from waiting.

In addition to that, DV will enable your user interface to look like the one you had on your previous PC. This particular feature is actually very important to end users. You see, users normally have their own way of organising things on their desktops. The moment you put them in front of a desktop not their own, even if it has the same OS and the same set of applications, they?ll feel disoriented and won’t be able to perform optimally.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How SOA can help Transformation

Undoubtedly, today’s business leaders face myriad challenges ranging from fierce market competition to increasing market unpredictability. In addition, the modern consumer is more informed and in control of what, where and how they purchase. Couple these challenges with effects of globalization, and you will appreciate that need for business transformation is more of a necessity than a privilege.

As recent business trends show, top companies are characterized by organizational and operational agility. Instead of being shaken by rapid technological changes and aftershocks associated with market changes, they are actually invigorated by these trends. In order to survive in these turbulent times, business leaders are opting to implement corporate transformation initiatives to develop leaner, more agile and productive operations. In line with this, service oriented architecture (SOA) has emerged as an essential IT transformation approach for implementing sustainable business agility.

By definition, service oriented architecture is a set of principles and techniques for developing and designing software in form of business functionalities. SOA allows users to compile together large parts of functionality to create ad hoc service software entirely from the template software. This is why it is preferred by CIOs that are looking to develop business agility. It breaks down business operations into functional components (referred to as services) that can be easily and economically merged and reused in applicable scenarios to meet evolving business needs. This enhances overall efficiency, and improves organizational interconnectivity.

SOA identifies shortcomings of traditional IT transformation approaches that were framed in monolithic and vertical silos all dependent on isolated business units. The current business environment requires that individual business units should be capable of supporting multiple types of users, multiple communication channels and multiple lines of business. In addition, it has to be flexible enough to adapt to changing market needs. In case one is running a global business enterprise, SOA-enabled business transformation can assist in achieving sustainable agility and productivity through a globally integrated IT platform. SOA realizes its IT and business benefits by adopting a design and analyzing methodology when developing services. In this sense a service consists of an independent business unit of functionality that is only available through a defined interface. Services can either be in the form of nano-enterprises or mega-enterprises.

Furthermore, with SOA an organization can adopt a holistic approach to solve a problem. This is because the business has more control over its functions. SOA frees the organization from constraints attributed to having a rigid single use application that is intricately meshed into a fragmented information technology infrastructure. Companies that have adopted service oriented architecture as their IT transformation approach, can easily repurpose, reorganize and rescale services on demand in order to develop new business processes that are adaptable to changes in the business environment. In addition, it enables companies to upgrade and enhance their existing systems without incurring huge costs associated with ‘rip and replace’ IT projects.

In summary, SOA can be termed as the cornerstone of modern IT transformation initiatives. If properly implemented great benefits and a sharp competitive advantage can be achieved. SOA assists in transforming existing disparate and unconnected processes and applications into reusable services; creating an avenue where services can be rapidly reassembled and developed to support market changes.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?