How To Get Started with your IT Compliance Efforts for SOX

There’s no question about it. For many of you top executives in the corporate world, all roads leading to a brighter future have to go through SOX compliance. And because the business processes that contribute to financial reporting (the crux of the Sarbanes-Oxley Act) are now highly reliant on IT systems, it is important to focus a good part of your attention there.

It is a long and arduous path to IT compliance, so if you don’t want your company to fall by the wayside due to inefficient utilisation of resources, it is important to set out with a plan on hand. What we have here are some vital information that will guide you in putting together a sound plan for SOX compliance of your company?s IT systems.

Why focus on IT systems for SOX compliance?

We’ll get to that. But first, let’s take up the specific portions of the Sarbanes-Oxley Act that affect information technology. These portions can be found in Section 302 and Section 404 of the act.

In simplified form, Section 302 grants the SEC (Securities and Exchange Commission) authority to come up with rules requiring you, CEOs and CFOs, to certify in each annual or quarterly financial report the following:

  • that you have reviewed the report;
  • that based on your knowledge, the report does not contain anything or leave out anything that would render it misleading;
  • that based on your knowledge, all financial information in the report fairly represent the financial conditions of the company;
  • that you are responsible for establishing internal controls over financial reporting; and
  • that you have assessed the effectiveness of the internal controls.

Similarly, Section 404, stated in simplified form, allows the SEC to come up with rules requiring you, CEOs and CFOs, to add an internal control report to each annual financial report stating that you are responsible for establishing internal controls over financial reporting.

You are also required to assess the effectiveness of those controls and to have a public accounting firm to attest to your assessment based upon standards adopted by the Public Company Accounting Oversight Board (PCAOB).

While there is no mention of IT systems, IT systems now play a significant role in financial reporting. Practically all of the data you need for your financial reports are stored, retrieved and processed on IT systems, so you really have to include them in your SOX compliance initiatives and establish controls on them.

Now that that’s settled, your next question could very well be: How do you know what controls to install and whether those controls are already sufficient to achieve compliance?

Finding a suitable guide for IT compliance

The two bodies responsible for setting rules and standards dealing with SOX, SEC and PCAOB, point to a well-established control framework for guidance – COSO. This framework was drafted by the Committee of Sponsoring Organisations of the Treadway Commission (COSO) and is the most widely accepted control framework in the business world.

However, while COSO is a tested and proven framework, it is more suitable for general controls. What we recommend is a widely-used control framework that aligns well with COSO but also caters to the more technical features and issues that come with IT systems.

Taking into consideration those qualifiers, we recommend COBIT. COBIT features a well thought out collection of IT-related control objectives grouped into four domains: Plan and Organise (PO), Acquire and Implement (AI), Deliver and Support (DS), and Monitor and Evaluate (ME). The document also includes maturity models, performance goals and metrics, and activity goals.

A few examples of COBIt’s detailed control objectives are:

DS4.2 – IT Continuity Plans
DS4.9 – Offsite Backup Storage
DS5.4 – User Account Management
DS5.8 – Cryptographic Key Management
DS5.10 – Network Security
DS5.11 – Exchange of Sensitive Data

By those titles alone, you can see that the framework is specifically designed for IT. But the document is quite extensive and, chances are, you won’t need all of the items detailed there. Furthermore, don’t expect COBIT to specify a control solution controls for every control objective. For example, throughout the control objective DS4 (Ensure Continuous Service), you won’t find any mention of virtualisation, which is common in any modern business continuity solution.

Basically, COBIT will tell you what you need to attain in order to achieve effective governance, management and control, but you’ll have to pick the solution best suited to reach that level of attainment.

Articles highly relevant to the one you just read:

Month End Accounting The Way It Should Be Today
Spreadsheet Woes ? Burden in SOX Compliance and Other Regulations
Spreadsheet Woes ? Limited Features For Easy Adoption of a Control Framework
How Internal Auditors Can Win The War Against Spreadsheet Fraud

Check our similar posts

The Matrix Management Structure

Organizations exploit matrix management in various ways. A company, for instance, that operates globally uses it at larger scale by giving consistent products to various countries internationally. A business entity, having many products, does not assign its people to each product full-time but assign those to different ones on a part time basis, instead. And when it comes to delivering high quality and low cost products, companies overcome industry pressures with the help of many overseeing managers. In a rapidly changing environment, organizations respond quickly by sharing information through a matrix model.

Understanding the Matrix Management Structure

A basic understanding of matrix management starts with the three key roles and responsibilities that applies in the structure.

  • Matrix Leader ? The common person above all the matrix bosses is the matrix leader. He ensures that the balance of power is maintained in the entire organization by delegating decisions and promoting collaboration among the people.
  • Matrix Managers ? The managers cooperate with each other by defining the respective activities that they are responsible for.
  • Matrix Employees – The employees have lesser direct authority but has more responsibilities. They resolve differing demands from more than one matrix managers while they work things out upwards. Their loyalty must be dual and their relationships with managers must be maintained.

Characteristics of a Matrix Structure

Here are some features that define the matrix management structure:

  • Hybrid Structure ?The matrix structure is a mix of functional and project organization. Since it is a combination of these two, matrix management is hybrid in nature.
  • Functional Manager ? When it comes to the technical phases of the project, the functional manager assumes responsibility. The manager decides on how to get the project done, delegates the tasks to the subordinates and oversees the operational parts of the organization.
  • Project Manager ? The project manager has full authority in the administrative phases, including the physical and financial resources needed to complete the project. The responsibilities of a project manager comprise deciding on what to do, scheduling the work, coordinating the activities to diverse functions and evaluating over-all project performance.
  • Specialization ?As the functional managers concentrate on the technical factors, the project managers focus on administrative ones. Thus, in matrix management, there is specialization.
  • Challenge in Unity of Command ? Companies that employs matrix management usually experience a problem when it comes to the unity of command. This is largely due to the conflicting orders from the functional and project managers.

Types of Matrix Structure

The matrix management structure can be classified according to the level of power of the project manager. Here are three distinct types of matrix structures that are widely used by organizations.

  • Weak Matrix ? The project manager has limited authority and power as the functional manager controls the budget of the project. His role is only part-time and more like a coordinator.
  • Strong Matrix ? Here, the project manager has almost all the authority and power. He controls the budget, holds the full time administrative project management and has a full time role.
  • Balanced Matrix ? In this structure type, both the project and functional managers control the budget of the project. The authority and power is shared by the two as well. Although the project manager has a full time role, he only has a part time authority for the administrative staff to report under his leadership.

Successful companies of today venture more on enhancing the abilities, skills, behavior and performances of their managers than the pursuit of finding the best physical structure. Indeed, learning the fundamentals of the matrix structure is essential to maximize its efficiency. A senior executive pointed out that one of the challenges in matrix management is not more of building a structure but in creating the matrix to the mind of the managers. This comes to say that matrix management is not just about the structure, it is a frame in the mind.

Finding the Best Structure for Your Enterprise Development Team

An enterprise development team is a small group of dedicated specialists. They may focus on a new business project such as an IoT solution. Members of microteams cooperate with ideas while functioning semi-independently. These self-managing specialists are scarce in the job market. Thus, they are a relatively expensive resource and we must optimise their role.

Organisation?Size and Enterprise Development Team Structure

Organisation structure depends on the size of the business and the industry in which it functions. An enterprise development team for a micro business may be a few freelancers burning candles at both ends. While a large corporate may have a herd of full-timers with their own building. Most IoT solutions are born out of the efforts of microteams.

In this regard, Bill Gates and Mark Zuckerberg blazed the trail with Microsoft and Facebook. They were both college students at the time, and both abandoned their business studies to follow their dreams. There is a strong case for liberating developers from top-down structures, and keeping management and initiative at arm?s length.

The Case for Separating Microteams from the?Organisation

Microsoft Corporation went on to become a massive corporate, with 114,000 employees, and its founder Bill Gates arguably one of the richest people in the world. Yet even it admits there are limitations to size. In Chapter 2 of its Visual Studio 6.0 program it says,

‘today’s component-based enterprise applications are different from traditional business applications in many ways. To build them successfully, you need not only new programming tools and architectures, but also new development and project management strategies.?

Microsoft goes on to confirm that traditional, top-down structures are inappropriate for component-based systems such as IoT solutions. We have moved on from ?monolithic, self-contained, standalone systems,? it says, ?where these worked relatively well.?

Microsoft’s model for enterprise development teams envisages individual members dedicated to one or more specific roles as follows:

  • Product Manager ? owns the vision statement and communicates progress
  • Program Manager ? owns the application specification and coordinates
  • Developer ? delivers a functional, fully-complying solution to specification
  • Quality Assurer ? verifies that the design complies with the specification
  • User Educator ? develops and publishes online and printed documentation
  • Logistics Planner ? ensures smooth rollout and deployment of the solution

Three Broad Structures for Microteams working on IoT Solutions

The organisation structure of an enterprise development team should also mirror the size of the business, and the industry in which it functions. While a large one may manage small microteams of employee specialists successfully, it will have to ring-fence them to preserve them from bureaucratic influence. A medium-size organisation may call in a ?big six? consultancy on a project basis. However, an independently sourced micro-team is the solution for a small business with say up to 100 employees.

The Case for Freelancing Individuals versus Functional Microteams

While it may be doable to source a virtual enterprise development team on a contracting portal, a fair amount of management input may be necessary before they weld into a well-oiled team. Remember, members of a micro-team must cooperate with ideas while functioning semi-independently. The spirit of cooperation takes time to incubate, and then grow.

This is the argument, briefly, for outsourcing your IoT project, and bringing in a professional, fully integrated micro-team to do the job quickly, and effectively. We can lay on whatever combination you require of project managers, program managers, developers, quality assurers, user educators, and logistic planners. We will manage the micro-team, the process, and the success of the project on your behalf while you get on running your business, which is what you do best.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?