How COBIT helps you achieve SOX Compliance

First released way back in 1996, COBIT has already been around for quite a while. One reason why it never took off was because companies were never compelled to use it ? until now. Today, many CEOs and CIOs are finding it to be a vital tool for achieving SOX compliance in IT.

Thanks to SOX, COBIT (Control Objectives for Information and related Technology) is now one of the most widely accepted source of guidance among companies who have IT integrated with their accounting/financial systems. It has also gained general acceptability with third parties and regulators. But how did this happen?

Role of control frameworks in SOX compliance

You see, the Sarbanes-Oxley Act, despite having clearly manifested the urgency of establishing effective internal controls, does not provide a road map for you to follow nor does it specify a yardstick to help you determine whether an acceptable mileage in the right direction has already been achieved.

In other words, if you were a CIO and you wanted to find guidance on what steps you had to take to achieve compliance, you wouldn’t be able to find the answers in the legislation itself.

That can be a big problem. Two of your main SOX compliance obligations as a CEO or CIO is to assume responsibility in establishing internal controls over financial reporting and to certify their effectiveness. After that, the external auditors are supposed to attest to your assertions. Obviously, there has to be a well-defined basis before you can make such assertions and auditors can attest to anything.

In the language of auditors, this ?well-defined basis? is known as a control framework. Simply put, once you certify the presence of adequate internal controls in your organisation, the external auditor will ask, ?What control framework did you use??

Knowing what control framework you employed will help external auditors determine how to proceed with their evaluations and tests. For your part, a control framework can serve as a guide to help you work towards specific objectives for achieving compliance. Both of you can use it as a common reference point before drawing any conclusions regarding your controls.

But there are many control frameworks out there. What should you use?

How SOX, COSO, and COBIT fit together

Fortunately, despite SOX?s silence regarding control frameworks, you aren’t left entirely to your own devices. You could actually take a hint from the SEC and PCAOB, two of the lead organisations responsible for implementing SOX. SEC and PCAOB point to the adoption of any widely accepted control framework.

In this regard, they both highly endorse COSO, a well-established internal control framework formulated by the Committee of Sponsoring Organisations of the Treadway Commission (COSO). Now, I must tell you, if you’re looking specifically for instructions pertaining to IT controls, you won’t find those in COSO either.

Although COSO is the most established control framework for enterprise governance and risk management you’ll ever find (and in fact, it’s what we recommend for your general accounting processes), it lacks many IT-related details. What is therefore needed for your IT processes is a framework that, in addition to being highly aligned with COSO, also provides more detailed considerations for IT.

This is where COBIT fits the bill.

How COBIT can contribute to your regulatory compliance endeavors

COBIT builds upon and adheres with COSO while providing a finer grain of detail focused on IT. You can even find a mapping between COBIT IT processes and COSO components within the COBIT document itself.

Designed with regulatory compliance in mind, COBIT lays down a clear path for developing policies and good practice for IT control, thus enabling you to bridge the gap between control requirements, technical issues, and business risks.

Some of the components you’ll find in COBIT include:

IT control objectives

These are statements defining specific desired results that, as a whole, characterise a well-managed IT process. They come in two forms for each COBIT-defined IT process: a high-level control objective and a number of detailed control objectives. These objectives will enable you to have a sense of direction by telling you exactly what you need to aim for.

Maturity models

These are used as benchmarks that give you a relative measurement stating where your level of management or control over an IT process or high-level control objective stands. It serves as a basis for setting as-is and to-be positions and enables support for gap analysis, which determines what needs to be done to achieve a chosen level. Basically, if a control objective points you to a direction, then its corresponding maturity model tells you how far in that direction you’ve gone.

RACI charts

These charts tell you who (e.g. CEO, CFO, Head of Operations, Head of IT Administration) should be Responsible, Accountable, Consulted, and Informed for each activity.

Goals and Metrics

These are sets of goals along with the corresponding metrics that allow you to measure against those goals. Goals and metrics are defined in three levels: IT goals and metrics, which define what business expects from IT; process goals and metrics, which define what the IT process should deliver to support It’s objectives; and activity goals and metrics, which measure how well the process is performing.

In addition to those, you’ll also find mappings of each process to the information criteria involved, IT resources that need to be leveraged, and the governance focus areas that are affected.

Everything is presented in a logical and manageable structure, so that you can easily draw connections between IT processes and business goals, which will in turn help you decide what appropriate governance and control is needed. Ultimately, COBIT can equip you with the right tools to maintain a cost-benefit balance as you work towards achieving SOX compliance.

Check our similar posts

Why Predictive Maintenance is More Profitable than Reactive Maintenance

Regular maintenance is needed to keep the equipment in your facility operating normally. All machinery has a design lifespan, and your goal is to extend this as long as possible, while maintaining optimal production levels. How you go about the maintenance matters, from routine checks to repairing the damaged component parts?all before the whole unit needs to be tossed away and a new one purchased and installed. Here, we will break down the different approaches used, and show you why more industries and businesses are turning to proactive maintenance modes as opposed to the traditional reactive approaches for their?field service operations.?

Reactive Maintenance: A wait and see game

Here, you basically wait for a problem to occur, then fix it. It’s also commonly referred to as a “Run-to-Failure” approach, where you operate the machines and systems until they break. Repairs are then carried out, restoring it to operational condition.?

At face value, it appears cost-effective, but the reality on the ground is far much different. Sure, when the equipment is new, you can expect minimal cases of maintenance. During this time, there?ll be money saved. However, as time progresses there?ll be increased wear, making reliance on a reactive maintenance approach a costly endeavour. The breakdowns are more frequent, and inconsistent as well. Unplanned expenses increase operational costs, and there will be lost productivity during the periods in which the affected machinery won’t be in operation.?

While reactive maintenance makes sense when you’re changing a faulty light bulb at home, things are more complicated when it comes to dealing with machinery in industries, or for those managing multiple residential and commercial properties. For the light bulb, it’s easier to replace it, and failure doesn’t have a ripple effect on the rest of the structures in the household. For industries, each time there is equipment failure, you end up with downtime, production can grind to a halt, and there will be increased environmental risks during equipment start-up and shutdown. If spare parts are not readily available, there will be logistical hurdles as you rush the shipping to get the component parts to the facility. Add this to overworked clients in a bit to complete the repair and to make up for lost hours and delayed customer orders.

For field service companies, more time ends up being spent. After all, there?s the need of knowing which parts needed to be attended to, where they are, and when the servicing is required. Even when you have a planned-out schedule, emergency repairs that are required will force you to immediately make changes. These ramps up the cots, affecting your operations and leading to higher bills for your client. These inconveniences have contributed to the increased reliance on?field service management platforms that leverage on data analytics and IoT to reduce the repair costs, optimise maintenance schedules, and?reduce unnecessary downtimes?for the clients.

Waiting for the machinery to break down actually shortens the lifespan of the unit, leading to more replacements being required. Since the machinery is expected to get damaged much sooner, you also need to have a large inventory of spare parts. What’s more, the damages that result will be likely to necessitate more extensive repairs that would have been needed if the machinery had not been run to failure.?

Pros of reactive maintenance

  1. Less staff required.
  2. Less time is spent on preparation.

Cons of reactive maintenance

  1. Increased downtime during machine failure.
  2. More overtime is taken up when conducting repairs.
  3. Increased expenses for purchasing and storing spare parts.?
  4. Frequent equipment replacement, driving up costs.?

This ?If it ain’t broke, don’t fix it? approach leads to hefty repair and replacement bills. A different maintenance strategy is required to minimise costs. Proactive models come into focus. Before we delve into predictive maintenance, let’s look at the preventive approach.?

Preventive Maintenance: Sticking to a timetable

Here, maintenance tasks are carried out on a planned routine?like how you change your vehicle?s engine oil after hitting a specific number of kilometres. These tasks are planned in intervals, based on specific triggers?like a period of time, or when certain thresholds are recorded by the meters. Lubrication, carrying out filter changes, and the like will result in the equipment operating more efficiently for a longer duration of time. While it doesn’t completely stop catastrophic failures from occurring, it does reduce the number of failures that occur. This translates to capital savings.??

The Middle Ground? Merits And Demerits Of Preventive Maintenance

This periodic checking is a step above the reactive maintenance, given that it increases the lifespan of the asset, and makes it more reliable. It also leads to a reduced downtime, thus positively affecting your company?s productivity. Usually, an 80/20 approach is adopted,?drawing from Pareto’s Principle. This means that by spending 80% of time and effort on planned and preventive maintenance, then reactive maintenance for those unexpected failures that pop up will only occur 20% of the time. Sure, it doesn’t always come to an exact 80/20 ratio, but it does help in directing the maintenance efforts of a company, and reducing the expenses that go into it.?

Note that there will need to be a significant investment?especially of time, in order to plan a preventive maintenance strategy, plus the preparation and delegation of tasks. However, the efforts are more cost effective than waiting for your systems and machinery to fail in order to conduct repairs. In fact, according to the US Dept. of Energy, a company can save between 12-18 % when using a preventive maintenance approach compared to reactive maintenance.

While it is better than the purely reactive approach, there are still drawbacks to this process. For instance, asset failure will still be likely to occur, and there will be the aspect of time and resource wastage when performing unneeded maintenance, especially when technicians have to travel to different sites out in the field. There is also the risk of incidental damage to machine components when the unneeded checks and repairs are being carried out, leading to extra costs being incurred.

We can now up the ante with predictive maintenance. Let’s look at what it has to offer:

Predictive Maintenance: See it before it happens

This builds on preventive maintenance, using data analytics to smooth the process, reduce wastage, and make it more cost effective. Here, the maintenance is conducted by relying on trends observed using data collected from the equipment in question, such as through vibration analysis, energy consumption, oil analysis and thermal imaging. This data is then taken through predictive algorithms that show trends and point out when the equipment will need maintenance. You get to see unhealthy trends like excessive vibration of the equipment, decreasing fuel efficiency, lubrication degradation, and their impact on your production capacities. Before the conditions breach the predetermined parameters of the equipment’s normal operating standards, the affected equipment is repaired or the damaged components replaced.??

Basically, maintenance is scheduled before operational or mechanical conditions demand it. Damage to equipment can be prevented by attending to the affected parts after observing a decrease in performance at the onset?instead of waiting for the damage to be extensive?which would have resulted in system failure. Using?data-driven?field service job management software will help you to automate your work and optimise schedules, informing you about possible future failures.

Sensors used record the condition of the equipment in real time. This information is then analysed, showing the current and future operational capabilities of the equipment. System degradation is detected quickly, and steps can be taken to rectify it before further deterioration occurs. This approach optimises operational efficiency. Firstly, it drastically reduces total equipment failure?coming close to eliminating it, extending the lifespan of the machinery and slashing replacement costs. You can have an orderly timetable for your maintenance sessions, and buy the equipment needed for the repairs. Speaking of which, this approach minimises inventory especially with regards to the spare parts, as you will be able to note the specific units needed beforehand and plan for them, instead of casting a wide net and stockpiling spare parts for repairs that may or may not be required. Repair tasks can be more accurately scheduled, minimising time wasted on unneeded maintenance.??

Preventive vs Predictive Maintenance?

How is predictive different from preventive maintenance? For starters, it bases the need for maintenance on the actual condition of the equipment, instead of a predetermined schedule. Take the oil-change on cars for instance. With the preventive model, the oil may be changed after every 5000?7500 km. Here, this change is necessitated because of the runtime. One doesn’t look at the performance capability and actual condition of the oil. It is simply changed because “it is now time to change it“. However, with the predictive maintenance approach, the car owner would ideally analyse the condition of the oil at regular intervals- looking at aspects like its lubrication properties. They would then determine if they can continue using the same oil, and extend the duration required before the next oil change, like by another 3000 kilometres. Perhaps due to the conditions in which the car had been driven, or environmental concerns, the oil may be required to be changed much sooner in order to protect the component parts with fresh new lubricant. In the long run, the car owner will make savings. The US Dept. of Energy report also shows that you get 8-12% more cost savings with the predictive approach compared to relying on preventive maintenance programs. Certainly, it is already far much more effective compared to the reactive model.?

Pros of Predictive Maintenance

  1. Increases the asset lifespan.
  2. Decreases equipment downtime.
  3. Decreases costs on spare parts and labour.
  4. Improves worker safety, which has the welcome benefit of increasing employee morale.
  5. Optimising the operation of the equipment used leads to energy savings.
  6. Increased plant reliability.

Cons of Predictive Maintenance

  1. Initial capital costs included in acquiring and setting up diagnostic equipment.
  2. Investment required in training the employees to effectively use the predictive maintenance technology adopted by the company.

The pros of this approach outweigh the cons.?Independent surveys on industrial average savings?after implementing a predictive maintenance program showed that firms eliminated asset breakdown by 70-75%, boosted production by 20-25%, and reduced maintenance costs by 25-30%. Its ROI was an average of 10 times, making it a worthy investment.

Data Leakage Prevention – Protecting Sensitive Information

When DuPont lost $400 million in intellectual property, it wasn’t because a hacker from the other side of the world infiltrated their system. The information was simply stolen by a former employee. Alarmingly, data loss incidents are not always caused by deliberate actions.

A file containing personal information accidentally attached to an email and sent to multiple recipients; financial data stored in a USB pen drive, accidentally left in a restaurant; or bank account data of colleagues, inadvertently posted on a company website – these are also some of the everyday causes of data loss.

A report done by research company Infowatch regarding global data leaks in 2010 showed that there were actually more accidental data leaks in that year compared to intentional ones. Accidental leaks comprised 53%, while intentional leaks comprised 42% (the rest were unidentified).

But even if they ?only? happened accidentally, breach incidents like these can still be very costly. The tens of thousands of dollars that you could sometimes end up paying in civil penalties (as in the case when you lose other people?s personal information) can just be the beginning. More costly than this is the loss of customer and investor confidence. Once you lose those, you could consequently lose a considerable portion of your business.

Confidential information that may already be leaking out right under your nose

With all the data you collect, process, exchange, and store electronically every day, your IT system has surely now become a storehouse of sensitive information. Some of them, you may be even taking for granted.

But imagine what would happen if any of the following trade secrets fell into the wrong hands: marketing plans, confidential customer information, pricing data, product development strategies, business plans, supplier information, source codes, and employee salaries.

These are not the only kind of data that you should be worried about. You could also get into trouble if your sloppy IT security fails to protect employee or client personal information such as their names; social security numbers; drivers license numbers; or bank account numbers and credit/debit card numbers along with their corresponding PINs.

In some countries, you could face onerous data breach notification requirements and heavy fines when these kind of data are involved.

There are now more holes to plug

It’s not just the different varieties of sensitive electronic information that you have to worry about. Because these data can take on different forms, i.e. data-at-rest, data-in-motion, and data-at-the-endpoints, you also need to take aim at different areas in your IT system.

Sensitive information can be found ?at rest? in each of your employees? hard disks, in your servers, storage disks, and in off-site backup disks. They can also be found ?in motion? in email, instant messaging, social networking messaging, P2P file sharing, ftp, http, and so on.

That’s not all. Your highly mobile workforce may have already introduced yet another high-risk area into your system: data-at-the-endpoints. This includes USB flash-disks, laptops, portable hard disks, CDs, and even smartphones.

The main challenge of data leak prevention

Having been made aware of the various aspects of data leakage, have you already come to grips with the extent of the task at hand?

There are two major things you need to do here to prevent data leakage.

One, you need to identify what data you have that can be considered as sensitive/confidential information. Of course you have financial information and employee salaries in your files. But do you also store personally identifiable information? Do you have trade secrets that are stored in electronic form?

Two, you need to pinpoint their locations. Are they only on your hard disks and laptops? Or have they made their way to flash drives, CDs/DVDs, or portable HDDs? Are they being transmitted through email or any other file transfer media?

The reason why you need to know what your sensitive data are as well as where they are is because you would like all efforts of securing them to be as efficient and unobtrusive as possible.

Let’s say, as a way of protecting your data, you decide to implement encryption. Since encryption can consume a lot of storage space and significantly reduce performance, it may be impractical to encrypt your entire database or all your files. For the same reason, you wouldn’t want to encrypt every single email that you send.

Thus, the best way would be to encrypt only the data that really need encryption. But again, you need to know what data needs to be encrypted and where those data can be found. That alone is no simple task.

Not only will you need to deal with the data you already have, you will also have to worry about the data that will go through your systems during the course of your day-to-day transactions.

Identifying sensitive data as it enters or leaves your system, goes through your network, or gets stored in your file system or database, and then applying the necessary security actions should be done automatically and intelligently. Otherwise, you could end up spending on a lot of man-hours or, worse, wasting them on a lot of false positives and negatives.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Recognizing Your Carbon Footprint

Countless times we have heard of the term ?carbon footprint?. Perhaps we have seen and heard it on TV or read it in newspapers, magazines and published articles. Indeed, it has been an expression familiar to everyone as it is always associated with climate change, carbon emissions, global warming, pollution and other environmental issues. Carbon footprint is real. It exists and, in fact, continues to affect the world we live in.

Defining Carbon Footprint

Two essential words comprise the term carbon footprint. Fundamentally, ?carbon? means the carbon dioxide circulating in the atmosphere. It is also the general word used for other greenhouse gasses emitted into the air. On the other note, ?footprint? refers to impact or effect.

Think about the footprints people leave on the beach sand upon walking on the shore. That is exactly what carbon footprint is like. It’s about the impact humans leave on the earth in the form of carbon dioxide and other greenhouse gases.

Calculating Your Personal Carbon Footprint

The food we eat, products we use, vehicles we ride on and electricity we consume emit carbon dioxide. In fact, our activities, lifestyle, homes, and countries contribute to climate change. And carbon footprint is the best estimate we can get of the full impact our doings affect the earth. It quantifies the amount of our carbon emission. With this, knowing how to calculate your personal carbon footprint is important.

There are various standards in calculating one?s carbon footprint. There is the so-called ?lifestyle assessment? and the input-output analysis. Lifestyle assessment works by adding up all the feasible emission pathways while the input-output analysis involves determining the total emissions of a particular country, dividing it by the carbon-emitting sectors and estimating the overall emissions of each sector. The input-output analysis makes sure that no emission pathway is missed out.

Calculating your carbon footprint manually is an effective way for you to understand your emissions better. You just need a lot of patience to learn how each footprint is generated. Moreover, there are also several resources online that can help you calculate your carbon footprint. Online carbon calculators are abundant across the web. To make your life simpler, you can opt to try those online calculators and easily determine your carbon emissions. However, such calculators vary in scope. So make sure that the online carbon calculator, you choose, is one that?includes emissions both direct and indirect.

Avoiding Toe Prints

A toe print is a portion of a footprint. Sometimes, people are misled in their calculations because they only get a carbon toe print instead of a footprint. The idea is that, you should cover a smart scope of your carbon emissions. Not only measuring a portion, but the whole.

Say for example, running a conventional car. The carbon emitted from the car is not only the fuel combustion from the diesel or petrol.? Likewise, the carbon released as the gas was processed and transported to your nearby gasoline station is also an addition to your carbon footprint. If you do not understand this, you will end up calculating your direct emissions while neglecting the indirect ones.

Be wise in calculating your carbon footprint. And when in doubt, whether you are an individual or a business entity, you should seek help from experts who can do it right.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?