Firewalls

There are two main reasons why some companies are hesitant to plug into the Internet.

  1. They know they’ll be exposing their company data to outside attacks from malicious individuals and malware.
  2. They fear their employees might get too many distractions: games, porn, chats, videos, and even social networking sites.

One vital component for your overall security strategy against such concerns? A firewall.

A firewall can block unauthorised access to certain Internet services from inside your organisation as well as prevent unauthenticated access from the outside. It is also used to monitor users’ activities while they were online.

In an enterprise setting, one may expect a collection of firewalls either for providing layered protection or segmenting off different units in the organisation. Some areas only need a standard line of defence while others require more restrictions. As such, certain firewalls may have different configurations compared to others.

Naturally, the more intricate an organisation’s defence requirements get, the more complex the task of monitoring, testing and configuring the firewalls becomes. That’s why we’re here to help.

  • We’ll evaluate your network as well as the security requirements of each department under your organisation to determine which firewall architecture is most suitable.
  • To achieve maximum efficiency, we’ll point out where each firewall should be positioned.
  • We’ll work with your key personnel to make sure all firewall configurations are set and optimised with your business rules in mind.
  • If a large number of firewalls are required, we’ll help you set up a firewall configuration management system.
  • Firewalls should be regularly tested and assessed to ensure they are in line with the organisation’s security policies. We’ll perform these routine tasks as well.

Firewalls aren’t very good at defending against sophisticated viruses. There are much better solutions for malware-related vulnerabilities, and we can help you in that regard too.

Other defences we’re capable of putting up include:

Check our similar posts

What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Eck Industries Sheds Fresh Light

William Eck began his business in 1948 in a 650m2 garage building. The aluminium foundry prospered, and now has an 18,500m2 factory in Manitowoc, Wisconsin employing 250 people casting a variety of casings. Like high-tech industries around the globe it needs effective illumination. After it measured its carbon footprint, it realised it needed energy efficient lighting too.

When Eck Industries began its review it had around 360 high-pressure sodium lights throughout the plant. Their operating cost was substantial. After taking independent advice from an independent agency they realised they needed to replace these with more energy-efficient fluorescent lights that consume half as much energy.

The feasibility team conducted performance tests to determine the optimum solution. After selecting enclosed, gasketed and waterproof T8 fluorescents (available in G13 bipin, single pin and recessed double contacts) they collaborated with the supplier to calculate the best combination of 4 and 6 bulb fixtures.

The fittings they chose cost $60,000 plus $10,000 installation. However a $33,000 energy rebate wrote down 47% of this immediately. They achieved further energy savings by attaching motion sensors to lights over low-traffic walkways.

The retrofit was a huge success, with an 8 month payback via a direct operating saving of $55,000 a year. Over and above enhanced illumination Eck Industries slashed 674,000 kilowatt hours off its annual lighting bill. During the 20 year design life, this equates to a total 13.5 million kilowatt hours. Other quantifiable benefits include 443 tons less carbon, 2 tons less sulphur dioxide, and 1 ton less nitrogen oxide per year.

Many companies face similar opportunities but fail to capitalise on them for a number of reasons. These may include not being aware of what is available, lacking technical insight, being short of working capital and simply being too busy to focus on them.

Eck Industries got several things right. Firstly, they consulted an independent specialist; secondly they trusted their supplier to provide honest advice, and thirdly they accepted that any significant saving is worth chasing down. Other spin-offs were safer, more attractive working conditions and an opportunity to take their foot off the carbon pedal. This is an excellent example of what is possible when you try.

If you have measured your illumination cost and are concerned about it (but are unsure what the metric means within the bigger picture) then Ecovaro offers online reports comparing it with your industry average, and highlights the cost-benefits of alternative lighting. 

The Future is Smarter with a Smart Meter

Traditionally, electricity and water meter consumption was measured via analogue meters. Utility billing was based on actual consumption units obtained from the meter by meter readers. This entailed physical visits to the metering point. Lots of challenges came with meter reading; talk of customers feeling their privacy is intruded, meter readers encountering hostile customers, dogs, closed gates. The result was estimated bills that were most often than not very high.

Smart meters can be dubbed as the ?next generation? type of meters. Smart meters send wireless electronic meter readings to one?s energy supplier automatically. There are both gas smart meters and electricity smart meters. Smart meters come with in-home displays, which give someone real-time feedback on their energy usage and the associated cost.

Smart meters communicate meter readings directly to utility companies therefore no one has to come to your home to read your meter; and neither are you required to submit meter readings yourself. This not only reduces costs, but leads to more accurate electricity bills practically eliminating estimated bills. Smart meters signal the end of estimated bills, and the end of overpaying or underpaying for energy.

Whereas a smart meter in itself does not save you money, the add-ons (in-home displays) that come with the smart meters and which give someone real-time feedback on their energy usage helps them to reduce the unnecessary energy use and this ultimately leads to better oversight into how to lower utility bills hence better management of one?s energy use.

In summary, a smart meter is a technology that enables energy consumers to see their energy as they use it, a technology where energy is displayed as it is being used and wireless ratings sent. Adoption of smart meters would mean the end of estimated energy bills.

Smart meters are also promising a smart future where all energy consuming devices can be connected to the internet and centrally controlled using computers or smartphones. This means one is able to switch off lights and other energy consuming devices from a central point, hence make savings and this will enable them to have greater control of their energy use, hence more comfort, convenience and life will be cheaper for all. This is the smarter future we are all looking forward to.

Ready to work with Denizon?