2015 ESOS Guidelines Chapter 1 – Who Qualifies

electronic cable plug with green mint and flowers on blue background. Friendly green living. Earth

The base criteria are any UK undertaking that employs more than 250 people and/or has a turnover in excess of €50 million and/or has a balance sheet total greater than €43 million. There is little point in attempting to separate off high polluting areas. If one corporate group qualifies for ESOS, then all the others are obligated to take part too. The sterling equivalents of £38,937,777 and £33,486,489 were set on 31 December 2014 and apply to the first compliance period.

Representatives of Overseas Entities

UK registered branches of foreign entities are treated as if fully UK owned. They also have to sign up if any overseas corporate element meets the threshold no matter where in the world. The deciding factor is common ownership throughout the ESOS system. ecoVaro appreciates this. We have seen European companies dumping pollution in under-regulated countries for far too long.

Generic Undertakings that Could Comply

The common factor is energy consumption and the organisation’s type of work is irrelevant. The Environmental Agency has provided the following generic checklist of undertakings that could qualify:

Limited CompaniesPublic CompaniesTrusts
PartnershipsPrivate Equity CompaniesLimited Liability Partnerships
Unincorporated AssociationsNot-for-Profit BodiesUniversities (Per Funding)

Organisations Close to Thresholds

Organisations that come close to, but do not quite meet the qualification threshold should cast their minds back to previous accounting periods, because ESOS considers current and previous years. The exact wording in the regulations states:

“Where, in any accounting period, an undertaking is a large undertaking (or a small or medium undertaking, as the case may be), it retains that status until it falls within the definition of a small or medium undertaking (or a large undertaking, as the case may be) for two consecutive accounting periods.”

Considering the £50,000 penalty for not completing an assessment or making a false or misleading statement, it makes good sense for close misses to comply.

Joint Ventures and Participative Undertakings

If one element of a UK group qualifies for ESOS, then the others must follow suit with the highest one carrying responsibility. Franchisees are independent undertakings although they may collectively agree to participate. If trusts receive energy from a third party that must do an ESOS, then so must they. Private equity firms and private finance initiatives receive the same treatment as other enterprises. De-aggregations must be in writing following which separated ESOS accountability applies.

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK

The Connection between Big Data and MDM

Electronic data

Master Data is information that is critical to your business. This could include contracts, proprietary information, intellectual capital and a whole lot more besides. Because this often reposes in a variety of different places, you need a master data management / MDM policy to control it. That way, you can link it all together in a single, secure, backed up file.

This Sounds Like Big Data

Not necessarily: big data refers to extremely large data sets that are best stored and analysed on a cloud using big technology, in order to uncover trends, patterns and associations often relating to human behaviour. Of course, if you run a niche restaurant your critical master data might be limited to a few recipes and the books you do not care to show your accountant.

The distinction is largely a question of size: think of your master data as the subset of big data that you already have your mind around. According to John Case of IBM this is probably already in a structured format and available to share. He goes on to present a cogent case for using this as a peg point around which to systematise the rest. This is because the average organisation already has master data recording customers’ and prospects’ behaviour.

Do I Still Need My Master Data?

Yes you do, because real people created it with the benefit of human insight. Retain it as a separate set. Then compare it with the results of big data processing for even richer insights. Two heads are better that one and that goes for data processing too.

Trends in CRM Big Data

Adding data via location-aware devices like smartphones and tablets is adding a new dimension to customer information. We now know where they were when they made the enquiry or punched in the information. Use this geo-location data to hone the way you interact with customers and service their accounts. Do not phone a customer who makes decisions at work when they are at home.

Does My Master Data Belong on a Cloud?

There are a number of ‘ifs’ to consider. How comfortable are you with your service provider. What would happen if someone hacked their server? There are many advantages to cloud technology. Denizon knows of solutions you can rely on, and makes sure its clients have contingency plans to protect them at all times.

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK

What Sub-Metering did for Nissan in Tennessee

Electric meters in a row measuring power use. Electricity consum

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ‘We’ve already squeezed the lemon dry,’ they seemed to say. ‘What makes you think there’s more to come?’

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ‘The only disadvantage of sub-metering is that now we can’t imagine doing without it.’

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK

What Energy Management Software did for CDC

Hand Pointing at Statistics Graph

Chrome Deposit Corporation – that’s CDC for short – reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company’s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We’ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK

How Westin Melbourne Hotel Trimmed its Footprint

Pebble stones arranged like footprints on the beach. Family summer vacation concept

Becoming sustainable is a three-pronged process. You must save money and push the buttons the government is pressing you to. But there’s a deeper, more urgent issue. If your customers mark you down for not being green enough you are heading for trouble. Let’s see how well this hotel is doing.

The Melbourne flagship of the Westin hotel chain boasts 262 spacious rooms with views of Melbourne Square and surrounding theatres, designer boutiques, galleries and national landmarks. The architects included conference facilities, a wellness centre and sundry bars and restaurants. After climate change arrived to stay, hotel management discovered they had inherited a water and energy-greedy monster. Their solution was to measure what was going through their systems, and then progressively cap the building’s greedy appetite.

The Melbourne Westin Hotel could not have achieved results without these metrics. They began by determining key indicators and measuring them. This provided them with criteria to set achievable, cost effective targets in the following key areas of their business:

  1. Water Management – Demand-based linen and towel recycling, installation of back-washable water filters, water-saving shower heads, dual-flush toilets.
  2. Waste Management – Conversion to green products, recycling kitchen oil, moving towards a paperless office, recycling everything possible.
  3. Energy Management – Energy-efficient light bulbs, standby settings for lights, computers, televisions and air conditioners
  4. Stakeholder Communication – Staff green-team training, guest education, ongoing employee briefings
  5. Strategic Positioning – Visible, top-down commitment, optimised carbon offsets from clean, renewable energy sources, clearly stated position in the market

Westin’s Melbourne landmark has made good progress towards becoming the green hotel for others to follow. It has adjusted its environmental policies, increased water and energy awareness and implemented tight waste management.

Consumers are already shopping to make their carbon footsteps lighter. Food stores are on the bandwagon although apparel is lagging. Perhaps it’s time you found out just how your company is shaping up. It’s no longer a matter of ‘if carbon taxes’. It’s a matter of ‘when it does’.

ecoVaro is a software system-in-the-cloud that lets you enter your water and energy consumption and process it online so you can monitor and manage your usage. In no time at all you could be saving money like Westin Melbourne did. Does that sound like something worth investigating?

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK

How Volvo Dublin achieved Zero Landfill Status

bulldozer working

The sprawling New River Valley Volvo plant in Dublin, Virginia slashed its electricity bill by 25% in a single year when it set its mind to this in 2009. It went on to become the first carbon-neutral factory in 2012 after replacing fossil energy with renewable power. Further efforts rewarded it with zero-landfill status in 2013. ecoVaro decided to investigate how it achieved this latest success.

Volvo Dublin’s anti-landfill project began when it identified, measured and evaluated all liquid and solid waste sources within the plant (i.e. before these left the works). This quantified data provided its environmental project team with a base from which to explore options for reusing, recycling and composting the discards.

Several decisions followed immediately. Volvo instructed its component suppliers to stop using cardboard boxes and foam rubber / Styrofoam as packaging, in favour of reusable shipping containers. This represented a collaborative saving that benefited both parties although this was just a forerunner of what followed.

Next, Volvo’s New River Valley truck assembly plant turned its attention to the paint shop. It developed methods to trap, reconstitute and reuse solvents that flushed paint lines, and recycle paint sludge to fire a cement kiln. The plant cafeteria did not escape attention either. The environment team made sure that all utensils, cups, containers and food waste generated were compostable at a facility on site.

The results of these simple, and in hindsight obvious decisions were remarkable. Every year since then Volvo has generated energy savings equivalent to 9,348 oil barrels or if you prefer 14,509 megawatts of electricity. Just imagine the benefits if every manufacturing facility did something similar everywhere around the world.

By 2012, the New River Valley Volvo Plant became the first U.S. facility to receive ISO 50001 energy-management status under a government-administered process. Further technology enhancements followed. These included solar hot water boilers and infrared heating throughout the 1.6 million square foot (148,644 square meter) plant, building automation systems that kept energy costs down, and listening to employees who were brim-full with good ideas.

The Volvo experience is by no means unique although it may have been ahead of the curve. General Motors has more than 106 landfill-free installations and Ford plans to reduce waste per vehicle by 40% between 2010 and 2016. These projects all began by measuring energy footprints throughout the process. ecoVaro provides a facility for you to do this too.

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK

How Ventura Bus Lines cleaned up its Act

Charging an electric car

Melbourne’s Ventura Bus Lines grew from a single bus in 1924 to a mega 308-vehicle fleet by the start of 2014. The family-owned provider has always been community centric; when climate-change became an issue it took quick and urgent action. As a result it now stands head and shoulders above many others. Let’s take a closer look at some of its decisions that made the difference.

The Important Things to Focus On

Ethanol Buses – Ventura is the only Australian company that uses ethanol power produced from sugar cane for experimental public transport. It compares emissions within its fleet, and knows that these produce significantly less CO2 while also creating jobs for locals.

Electric Buses – The company has been operating electric buses since 2009. These carry 42 seated among a total 68 passengers. The ride is smooth thanks to twin battery banks kept charged by braking and forward momentum. When required, a two-litre VW engine kicks in automatically.

Ongoing Driver Training – Ventura provides regular retraining sessions emphasising safe, environmentally-friending operations. Drivers are able to see their fuel consumption and carbon emissions online and experiment with ways to improve these.

Bus U-Turns – The capacity to measure throughput convinced the company to abandon the principle that buses don’t do U-Turns for safety’s sake. Road re-engineering made this possible in a busy downtown street. This reduced emissions equivalent to 4,000 cars and reduced vehicle downtime for servicing.

Increased Business – These initiatives allowed Ventura Bus Lines to improve its service as customers experience it. This led to an uptake in patronage and a corresponding downturn in the number of passenger car hours. The pleasure of travelling green no doubt contributed to this.

How Measuring Made the Difference

Ventura Bus Lines is big business. Its 308 buses operate out of 5 depots, cover 31% of the metropole, and transport close to 70,000 passengers on average daily which is no minor task. The ability to track, measure and analyse carbon emissions throughout the area has earned it compliance with National Greenhouse Energy Reporting Threshold 1 legislation.

It also uses the data to re-engineer bus routes to further reduce fuel consumption, energy consumption and operating costs. It’s amazing how measuring is affecting its bottom line, and the health of the Melbourne community at large.

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK

How Sustainable is Suez Environment

Waste water treatment, purification plant for factory

French-based Suez Environment works in the water and waste-management environment, with specific reference to water production, treatment, & pollution disposal, and waste treatment, recycling, incineration and site desensitisation. Its more than 65,000 employees distributed worldwide have participated in flagship projects like Renault’s goal of 95% reclamation of vehicle parts, and Lyonnaise des Eaux’s saving of 12 million cubic meters of water in a single year.

Suez Environment claims to have consistently increased the recovery rate of treated waste, decreased direct and indirect greenhouse gas emissions, and made significant inroads into the production of sustainable energy on behalf of its clients. But then surely that’s Suez Environment’s business, and with over 65,000 employees we are entitled to expect this. Given that there have been persistent allegations of privatised water distribution bumping prices up to the detriment of the poor, how effective is Suez Environment at practising what it preaches back home?

GDF Suez is its largest shareholder and includes it under its environmental and societal responsibility umbrella. This makes environmental performance an overarching goal alongside management systems, health and safety, risk and procurement, and ethics. Its environmental ambitions spin out into the following strategies:

  • Understand the interactions between our activities and the environment
  • Open dialogue with stakeholders and foster partnerships with them
  • Set quantitative and qualitative targets at all levels of the organisation
  • Achieve optimum balance between financial and environmental challenges
  • Be proactive; anticipate impacts on the environment and plan for them
  • Increase employee awareness through interactive training and education
  • Be constantly innovative; share successes within the organisation
  • Monitor progress continuously and publish measured results achieved.

These goals direct the Suez Environment management team’s attention towards optimising performance in key areas like greenhouse gases, energy management, renewable energy, biodiversity, responsible water management, pollution prevention and health and safety considerations.

Among numerous other examples, its waste incineration programs convert hazardous and conventional waste into heat used to generate electricity without requiring virgin carbon products. Elsewhere, the same energy warms market-gardening tunnels and work places on winter days.

Suez Environment uses sophisticated energy management software to analyse information that’s transmitted by data logging devices online. ecoVaro provides a similar service in the cloud. ecoVaro adapts to your requirements providing fresh insights to your business.

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK

How Mid-South Metallurgical cut Energy Use by 22%

Master looks on steelmaking process in furnace

Mid-South in Murfreesboro, Tennessee operates a high-energy plant providing precision heat treatments for high-speed tools – and also metal annealing and straightening services. This was a great business to be in before the energy crisis struck. That was about the same time the 2009 recession arrived. In no time at all the market was down 30%.

Investors had a pile of capital sunk into Mid-South’s three facilities spread across 21,000 square feet (2,000 square meters) of enclosed space. Within them, a number of twenty-five horsepower compressors plus a variety of electric, vacuum and atmospheric furnaces pumped out heat 27/7, 52 weeks a year. After the company called in the U.S. Department of Energy for assistance, several possibilities presented.

Insulate the Barium Chloride Salt Baths

The barium chloride salt baths used in the heat treatment process and operating at 1600°F (870°C) were a natural choice, since they could not be cooled below 1200°F (650°C) when out of use without hardening the barium chloride and clogging up the system. The amount of energy taken to prevent this came down considerably after they covered and insulated them. The recurring annual electricity saving was $53,000.

Manage Electrical Demand & Power

The utility delivers 480 volts of power to the three plants that between them consume between 825- and 875-kilowatt hours depending on the season. Prior to the energy crisis Mid-South Metallurgical regarded this level of consumption as a given. Following on the Department of Energy survey the company replaced the laminar flow burner tips with cyclonic burner ones, and implemented a number of other modifications to enhance thermal efficiency further. The overall natural gas reduction was 20%.

Implement Large Scale Site Lighting Upgrade

The 24/7 nature of the business makes lighting costs a significant factor. Prior to the energy upgrade this came from 44 older-type 400-watt metal halide fixtures. By replacing these with 88 x 8-foot (2.5 meter) fluorescent fittings Mid-South lowered maintenance and operating costs by 52%

The Mid-South Metallurgical Trophy Cabinet

These three improvements cut energy use by 22%, reduced peak electrical demand by 21% and brought total energy costs down 18%. Mid-South continues to monitor energy consumption at each strategic point, as it continues to seek out even greater energy efficiency in conjunction with its people.

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK

How Bombardier Inc. scored a Bulls Eye

Airplane In The Sky With Plane Trails

When travelling anywhere in the world on land, sea or air, chances are, you will travel courtesy of something made by aerospace and transportation company Bombardier based in Montreal, Canada. In 2009, it set itself the goal of carbon neutrality by 2020. In other words, it hoped to remove as much carbon dioxide from the atmosphere as it was putting in.

By 2012, Bombardier concluded it was not going to become carbon neutral by 2020 at its current rate of progress. It discounted purchasing carbon offsets because it believed it would serve its interests better by introducing new energy-saving products to market faster. That way, it would achieve its objectives vicariously through the decisions of its customers. But that was not all that forward-thinking Bombardier did. It also set itself the following inward-facing objectives:

  • Reduce carbon footprint through efficient use of energy and less emissions
  • Involve the Bombardier workforce to raise awareness of behaving responsibly
  • Implement sustainable initiatives to further reduce the company carbon footprint

Specific Examples

At its Wichita site, Bombardier (a) fitted a white roof and insulation reducing summer energy consumption by 40%, (b) added an energy recovery wheel to balance air circulation, and (c) introduced skylights with integrated controllers to lower energy consumption by lighting.

At Mirabel, it enhanced the flue-gas management system by adding a pressure differential damper.

At Belfast, Bombardier (a) optimised HVAC systems to reduce pressure on chilling and air-handling plants, (b) installed solar panels on the roof, and (c) obtained approval for a waste-to-energy plant that will convert 120,000 tonnes of non-recyclable waste material annually.

By the end of 2013, Bombardier had already beaten its immediate targets by:

  • Reducing energy consumption by 11% against 2009
  • Reducing greenhouse gas emission by 23% against 2009
  • Reducing water consumption by 6% against 2012

Future Plans

Bombardier will never stop striving to reach its goal of carbon neutrality by 2020. It has a number of other projects in the pipeline waiting for scarce resources to fund them. During 2014, it continued with energy efficient upgrades at its French, Hungarian, Polish, Swiss, and UK plants.

These include consumption monitoring systems, LEDs for workshop lighting, new heating systems, and outdoor energy-saving tower lighting. The monitoring is important because it helps Bombardier focus effort, and provides measured proof of progress.

Contact Us

  • (+353)(0)1-443-3807 - IRL
  • (+44)(0)20-7193-9751 - UK