Becoming Nimble the Agile Project Management Way

In dictionary terms, ?agile? means ?able to move quickly and easily?. In project management terms, the definition is ?project management characterized by division of tasks into short work phases called ?sprints?, with frequent reassessments and adaptation of plans?. This technique is popular in software development but is also useful when rolling out other projects.

Managing the Seven Agile Development Phases

  • Stage 1: Vision. Define the software product in terms of how it will support the company vision and strategy, and what value it will provide the user. Customer satisfaction is of paramount value including accommodating user requirement changes.
  • Stage 2: Product Roadmap. Appoint a product owner responsible for liaising with the customer, business stakeholders and the development team. Task the owner with writing a high-level product description, creating a loose time frame and estimating effort for each phase.
  • Stage 3: Release Plan. Agile always looks ahead towards the benefits that will flow. Once agreed, the Product Road-map becomes the target deadline for delivery. With Vision, Road Map and Release Plan in place the next stage is to divide the project into manageable chunks, which may be parallel or serial.
  • Stage 4: Sprint Plans. Manage each of these phases as individual ?sprints?, with emphasis on speed and meeting targets. Before the development team starts working, make sure it agrees a common goal, identifies requirements and lists the tasks it will perform.
  • Stage 5: Daily Meetings. Meet with the development team each morning for a 15-minute review. Discuss what happened yesterday, identify and celebrate progress, and find a way to resolve or work around roadblocks. The goal is to get to alpha phase quickly. Nice-to-haves can be part of subsequent upgrades.
  • Stage 6: Sprint Review. When the phase of the project is complete, facilitate a sprint review with the team to confirm this. Invite the customer, business stakeholders and development team to a presentation where you demonstrate the project/ project phase that is implemented.
  • Stage 7: Sprint Retrospective. Call the team together again (the next day if possible) for a project review to discuss lessons learned. Focus on achievements and how to do even better next time. Document and implement process changes.

The Seven Agile Development Phases ? Conclusions and Thoughts

The Agile method is an excellent way of motivating project teams, achieving goals and building result-based communities. It is however, not a static system. The product owner must conduct regular, separate reviews with the customer too.

Check our similar posts

What Is Technical Debt? A Complete Guide

You buy the latest iPhone on credit. Turn to fast car loan services to get yourself those wheels you’ve been eyeing for a while. Take out a mortgage to realise your dream of being a homeowner. Regardless of the motive, the common denominator is going into financial debt to achieve something today, and pay it off in future, with interest. The final cost will be higher than the loan value that you took out in the first place. However, debt is not limited to the financial world.

Technical Debt Definition

Technical debt – which is also referred to as code debt, design debt or tech debt – is the result of the development team taking shortcuts in the code to release a product today, which will need to be fixed later on. The quality of the code takes a backseat to issues like market forces, such as when there’s pressure to get a product out there to beat a deadline, front-run the competition, or even calm jittery consumers. Creating perfect code would take time, so the team opts for a compromised version, which they will come back later to resolve. It’s basically using a speedy temporary fix instead of waiting for a more comprehensive solution whose development would be slower.

How rampant is it? 25% of the development time in large software organisations is actually spent dealing with tech debt, according to a multiple case study of 15 organizations. “Large” here means organizations with over 250 employees. It is estimated that global technical debt will cost companies $4 trillion by 2024.

Is there interest on technical debt?

When you take out a mortgage or service a car loan, the longer that it takes to clear it the higher the interest will be. A similar case applies to technical debt. In the rush to release the software, it comes with problems like bugs in the code, incompatibility with some applications that would need it, absent documentation, and other issues that pop up over time. This will affect the usability of the product, slow down operations – and even grind systems to a halt, costing your business. Here’s the catch: just like the financial loan, the longer that one takes before resolving the issues with rushed software, the greater the problems will pile up, and more it will take to rectify and implement changes. This additional rework that will be required in future is the interest on the technical debt.

Reasons For Getting Into Technical Debt

In the financial world, there are good and bad reasons for getting into debt. Taking a loan to boost your business cashflow or buy that piece of land where you will build your home – these are understandable. Buying an expensive umbrella on credit because ‘it will go with your outfit‘ won’t win you an award for prudent financial management. This also applies to technical debt.

There are situations where product delivery takes precedence over having completely clean code, such as for start-ups that need their operations to keep running for the brand to remain relevant, a fintech app that consumers rely on daily, or situations where user feedback is needed for modifications to be made to the software early. On the other hand, incurring technical debt because the design team chooses to focus on other products that are more interesting, thus neglecting the software and only releasing a “just-usable” version will be a bad reason.

Some of the common reasons for technical debt include:

  • Inadequate project definition at the start – Where failing to accurately define product requirements up-front leads to software development that will need to be reworked later
  • Business pressure – Here the business is under pressure to release a product, such as an app or upgrade quickly before the required changes to the code are completed.
  • Lacking a test suite – Without the environment to exhaustively check for bugs and apply fixes before the public release of a product, more resources will be required later to resolve them as they arise.
  • Poor collaboration – From inadequate communication amongst the different product development teams and across the business hierarchy, to junior developers not being mentored properly, these will contribute to technical debt with the products that are released.
  • Lack of documentation – Have you launched code without its supporting documentation? This is a debt that will need to be fulfilled.
  • Parallel development – This is seen when working on different sections of a product in isolation which will, later on, need to be merged into a single source. The greater the extent of modification on an individual branch – especially when it affects its compatibility with the rest of the code, the higher the technical debt.
  • Skipping industrial standards – If you fail to adhere to industry-standard features and technologies when developing the product, there will be technical debt because you will eventually need to rework the product to align with them for it to continue being relevant.
  • Last-minute product changes – Incorporating changes that hadn’t been planned for just before its release will affect the future development of the product due to the checks, documentation and modifications that will be required later on

Types of Technical Debt

There are various types of technical debt, and this will largely depend on how you look at it.

  • Intentional technical debt – which is the debt that is consciously taken on as a strategy in the business operations.
  • Unintentional technical debt – where the debt is non-strategic, usually the consequences of a poor job being done.

This is further expounded in the Technical Debt Quadrant” put forth by Martin Fowler, which attempts to categorise it based on the context and intent:

Technical Debt Quadrant

Source: MartinFowler.com

Final thoughts

Technical debt is common, and not inherently bad. Just like financial debt, it will depend on the purpose that it has been taken up, and plans to clear it. Start-ups battling with pressure to launch their products and get ahead, software companies that have cut-throat competition to deliver fast – development teams usually find themselves having to take on technical debt instead of waiting to launch the products later. In fact, nearly all of the software products in use today have some sort of technical debt.

But no one likes being in debt. Actually, technical staff often find themselves clashing with business executives as they try to emphasise the implications involved when pushing for product launch before the code is completely ready. From a business perspective, it’s all about weighing the trade-offs, when factoring in aspects such as the aspects market situation, competition and consumer needs. So, is technical debt good or bad? It will depend on the context. Look at it this way: just like financial debt, it is not a problem as long as it is manageable. When you exceed your limits and allow the debt to spiral out of control, it can grind your operations to a halt, with the ripple effects cascading through your business.

 

Big Energy Data Management

Recent times have seen the advent of cloud based services and solutions where energy data is being stored in the cloud and being accessed from anywhere, anytime through remote mobile devices. This has been made possible by web-based systems that can usually bring real-time meter-data into clear view allowing for proactive business and facility management decisions. Some web based systems may even support multi utility metering points and come in handy for businesses operating multiple sites.

Whereas all this has been made possible by increased use of smart devices/ intelligent energy devices that capture data at more regular intervals; the challenge facing businesses is how to transform the large data/big volume of data into insights and action plans that would translate into increased performance in terms of increased energy efficiency or power reliability.

A solution to this dilemma facing businesses that do not know how to process big energy data, may lie in energy management software. Energy management software?s have the capability to analyse energy consumption for, electricity, gas, water, heat, renewables and oil. They enable users to track consumption for different sources so that consumers are able to identify areas of inefficiency and where they can reduce energy consumption, Energy software also helps in analytics and reporting. The analytics and reporting features that come with energy software are usually able to:

? Generate charts and graphs ? some software?s give you an option to select from different graphs

? Do graphical comparisons e.g. generate graphs of the seasonal average for the same season and day type

? Generate reports that are highly customisable

While choosing from the wide range of software available, it is important for businesses to consider software that has the capacity to support their data volume, software that can support the frequency with which their data is captured and support the data accuracy or reliability.

Energy software alone may not make the magic happen. Businesses may need to invest in trained human resources in order to realise the best value from their big energy data. Experts in energy management would then apply human expertise to leverage the data and analyse it with proficiency to make it meaningful to one?s business.

2015 ESOS Guidelines Chapter 6 – Role of Lead Assessor

The primary role of the lead assessor is to make sure the enterprise?s assessment meets ESOS requirements. Their contribution is mandatory, with the only exception being where 100% of energy consumption received attention in an ISO 50001 that forms the basis of the ESOS report.

How to Find a Lead Assessor

An enterprise subject to ESOS must negotiate with a lead assessor with the necessary specialisms from one of the panels approved by the UK government. This can be a person within the organisation or an third party. If independent, then only one director of the enterprise need countersign the assessment report. If an employee, then two signatures are necessary. Before reaching a decision, consider

  • Whether the person has auditing experience in the sector
  • Whether they are familiar with the technology and the processes
  • Whether they have experience of auditing against a standard

The choice rests on the enterprise itself. The lead assessor performs the appointed role.

The Lead Assessor?s Role

The Lead Assessor?s main job is reviewing an ESOS assessment prepared by others against the standard, and deciding whether it meets the requirements. They may also contribute towards it. Typically their role includes:

  • Checking the calculation for total energy consumption across the entire enterprise
  • Reviewing the process whereby the 90% areas of significant consumption were identified
  • Confirming that certifications are in place for all alternate routes to compliance chosen
  • Checking that the audit reports meet the minimum criteria laid down by the ESOS system

Note: A lead assessor may partly prepare the assessment themselves, or simply verify that others did it correctly.

In the former instance a lead assessor might

  • Determine energy use profiles
  • Identify savings opportunities
  • Calculate savings measures
  • Present audit findings
  • Determine future methodology
  • Define sampling methods
  • Develop audit timetables
  • Establish site visit programs
  • Assemble ESOS information pack

Core Enterprise Responsibilities

The enterprise cannot absolve itself from responsibility for good governance. Accordingly, it remains liable for

  • Ensuring compliance with ESOS requirements
  • Selecting and appointing the lead assessor
  • Drawing attention to previous audit work
  • Agreeing with what the lead assessor does
  • Requesting directors to sign the assessment

The Environment Agency does not provide assessment templates as it believes this reduces the administrative burden on the enterprises it serves.

Ready to work with Denizon?