Introduction to Matrix Management

A leader is responsible to empower his people and get the best out of them. Yet an organisational structure can either help or hamper performance. Worst, it can make or break success.

Looking at the fast-changing world of the global economy, whatsoever slows up and obstructs decision-making is a challenge. Hierarchical management is rather unattractive and functional silos are unlikable. Instead, employees desire to create teams equipped with flexibility, cooperation and coordination.

Recognising that companies have both vertical and horizontal chains of command, the matrix model is created. The concept of this principle lies in the ability to manage the collaboration of people across various functions and achieve strategic objectives through key projects.

Consider this scenario:

Ian is a sales executive of a company. His role is to sell a new product under the supervision of a product manager. The manager is expert about the product and she is accountable to coordinate the people across the organisation, making sure the product is achieved.

Moreover, Ian also reports to the sales manager who oversees his overall performance, monitors his pay and benefits and guides his personal development.

Complicated it may seem but this set-up is common to companies that seek to maximise the effect of expert product managers, without compromising the function of the staffing overhead in control of the organisation. This is a successful approach to management known as Matrix Management.

Matrix Management Defined

Matrix management is a type of organisational management wherein employees of similar skills are shared for work assignments. Simply stated, it is a structure in which the workforce reports to multiple managers of different roles.

For example, a team of engineers work under the supervision of their department head, which is the engineering manager. However, the same people from the engineering department may be assigned to other projects where they report to the project manager. Thus, while working on a designated project, each engineer has to work under various managers to accomplish the job.

Historical Background

Although some critics say that matrix management was first adopted in the Second World War, its origins can be traced more reliably to the US space programme of the 1960’s when President Kennedy has drawn his vision of putting a man on the moon. In order to accomplish the objective, NASA revolutionised its approach on the project leading to the consequent birth of ?matrix organisation?. This strategic method facilitated the energy, creativity and decision-making to triumph the grand vision.

In the 1970’s, matrix organisation received huge attention as the only new form of organisation in the twentieth century. In fact it was applied by Digital Equipment, Xerox, and Citibank. Despite its initial success, the enthusiasm of corporations with regards to matrix organisation declined in the 1980’s, largely because it was complex.

Furthermore, the drive for motivating people to work creatively and flexibly has only strengthened. And by the 1990’s, the evolution of matrix management geared towards creation and empowerment of virtual teams that focused on customer service and speedy delivery.

Although all forms of matrix has loopholes and flaws, research says that until today, matrix management is still the leading approach used by companies to achieve organisational goals.

Check our similar posts

2015 ESOS Guidelines Chapter 7, 8 & 9 – Sign-Off, Compliance & Appeals

This is the final chapter in our series of short posts summarising the quite complex ESOS guidelines (click on ?Comply with ESOS? to see the details). This one addresses the legalities to follow to complete your report – and how to appeal if you are not happy with any of the Environment Agency?s decisions.

  1. Director Sign-Off

This is by no means an easy ride. Confirmation of the work at individual or lead assessor level locks the company into the penalty cycle in the event there are significant irregularities. By signing off the assessment, the board level director(s) # agree that they have

  • Reviewed the enterprise?s ESOS recommendations
  • Believe the enterprise is within the scope of the scheme
  • Believe the enterprise is compliant with the scheme
  • Believe the information provided is correct

Having an internal assessor requires a second board-level signature.

  1. Compliance

You report compliance on the internet. This is free and you can do it at any time within the deadline. You can dip in and out of the process as many times as you wish, but must use the link in the receipting email. While this is something a board member must do, there is no reason why the lead assessor should not complete the basics. The online compliance notification addresses the following topics:

  • The ESOS contact person in the enterprise
  • Any aggregation / dis-aggregation during the period
  • The names and contact details of the lead assessor
  • The proportion of energy consumption per compliance route

The Environment Agency will acknowledge receipt. This does not constitute acceptance. You should keep the ESOS evidence pack in a safe place with at least one backup elsewhere.

  1. Compliance & Enforcement Issues

In the event the Environment Agency decides your enterprise has not met ESOS requirements, it may either (a) issue a compliance notice with instructions, or (b) apply one of the following civil penalties:

  • A fine of up to ?5,000 for failure to maintain records
  • A fine of up to ?50,000 for failure to undertake an energy audit
  • A fine of up to ?50,000 for a false or misleading statement

Any enterprise has the right of appeal against government decisions. In the case of ESOS, this is via:

  • The First-Tier Tribunal if your enterprise is England, Wales or off-shore based
  • The Scottish Minister if your enterprise is based in Scotland
  • The Planning Commission if your enterprise is Northern Ireland-based

The notice you appeal against will supply details of the appeal steps to take.

This blog and its companion chapters concerning the ESOS Guidelines as amended 2015 are with compliments of ecoVaro. We are the people who break ESOS data into manageable chunks of information, so that board-level directors have greater confidence in what they sign.

Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

8 Best Practices To Reduce Technical Debt

When past actions in software development return to haunt you…

Is your business being bogged down by technical debt? Let’s look at measures that you can take to reduce it and scale your operations without the weight pulling you back. 

 

Work with a flexible architecture.

Right from the word go, you want to use architecture whose design is malleable, especially with the rapid rate of software evolution witnessed today. Going with an architecture that keeps calling for too much refactoring, or whose design won’t accommodate future changes will leave you with costly technical debt. Use scalable architecture that allows you to modify or add new features in future releases. While on this, complex features required in the final product should be discussed at the planning stage, that way simplified solutions that will be easier to implement can be identified, as this will lead to less technical debt in the long run. 

 

The Deal with Refactoring 

This is basically cleaning up the code structure without changing its behaviour. With the updates, patches, and new functionalities that are added to the systems and applications, each change comes with the threat of more technical debt. Additionally, organisations are increasingly moving their IT infrastructure from on-premises facilities to colocation data centres and deploying them on the cloud. In such scenarios, some workarounds are often needed to enable the systems to function in the new environments, which they hadn’t been initially developed to accommodate. Here, you will need to take some time to refactor the existing system regularly, streamlining the code and optimizing its performance – and this will be key to pay down the tech debt. When working with a flexible architecture from the start, the amount of work that goes into this will be reduced, meaning there’ll be less tech debt involved. 

 

Run discovery tests

Discovery testing essentially takes place even before a line of code is written for the system or application. This takes place at the product definition stage, where human insight software is used to understand the needs of the customer and is particularly helpful in setting priorities for the development work that will be carried out. It gives your business the opportunity to minimize the technical debt by allowing customers to give you a roadmap of the most pertinent features desired from the product. 

 

Routine code review

Getting a fresh look at the product or application from different sets of eyes in the development team will improve the quality of the code, thus reducing technical debt. There’s a catch though – this should be planned in a convenient way that doesn’t end up becoming a burden for the developers. Here are suggestions:

Break down pull requests

Instead of having complex pull requests where numerous changes in the code are introduced at a go, have this broken down into smaller manageable pull requests, each with a brief title and description about it. This will be easier for the code reviewer to analyse. 

● Define preferred coding practices

Documenting the preferred coding style will result in cleaner code, meaning the developers will focus their effort on reviewing the code itself, not losing time on code format debates.

 

Test automation

Relying only on scheduled manual testing opens you up to the risk of technical debt accruing rapidly, and not having sufficient resources to deal with the accumulated problems when they are identified. Automated testing on the other hand enables issues to be uncovered quicker, and with more precision. For instance, you can have automated unit tests that look at the functioning of the individual components of a system, or regression testing where the focus is on whether the code changes that have been implemented have affected related components of the system. However, establishing and maintaining automated testing will require quite some effort – making it more feasible for the long-term projects.

 

Keep a repository that tracks changes made

Do you have a record of changes made in the software? Keeping one in a repository that is accessible by the development team will make it easy to pin-point problems at their source. For instance, when software is being migrated to a new environment, or legacy software is in the process of being modernised, you will want to have an accurate record of changes that are being introduced, that way if there is an undesired impact on the system this it will be easier to zero-down on the cause.

 

Bring non-technical stakeholders on board

Does this conversation sound familiar?

Development Team: “We need to refactor the messy code quickly”

Product Team: “We have no idea what you are saying”

On one hand, you have the management or product team defining the product requirements, creating a project roadmap, and setting its milestones. On the other hand, there’s the software development/engineering that’s primarily focused on the product functionality, technical operations and clearing the backlog in code fixes. Poor communication between the two teams is actually a leading cause of technical debt.

For you to take concrete steps in managing your technical debt, the decision-makers in the organisation should understand its significance, and the necessity of reducing it. Explain to them how the debt occurred and why steps need to be taken to pay it down – but you can’t just bombard them with tech phrases and expect them to follow your thought process. 

So how do you go about it? Reframe the issues involved with the technical debt and explain the business value or impact of the code changes. Basically, the development team should approach it from a business point of view, and educate the management or production team about the cost of the technical debt. This can include aspects such as expenses in changing the code, salaries for the software engineers especially when the development team will need to be increased due to the workload piling up, as well as the revenue that is lost when the technical debt is allowed to spiral. 

The goal here is to show the management or production team how issues like failing to properly define the product requirements will slow down future software development, or how rushing the code will affect the next releases. That way, there will be better collaboration between the teams involved in the project. 

 

Allocate time and resources specifically for reducing technical debt

With management understanding that working with low-quality code is just like incurring financial debt and it will slow down product development, insist on setting time to deal with the debt. 

For instance, when it comes to the timing of application releases, meetings can be conducted to review short- and longer-term priorities. These meetings – where the development team and product team or management are brought together, the developers point out the software issues that should be resolved as a priority as they may create more technical debt. Management then ensures that budgets and plans are put in place to explicitly deal with those ongoing maintenance costs.

 

Retire old platforms

While most of the resources are going into developing new applications and improving the systems being used, the organisation should also focus on retiring the old applications, libraries, platforms, and the code modules. It’s recommended that you factor this into the application release plans, complete with the dates, processes and costs for the systems involved. 

 

Total overhaul

When the cost and effort of dealing with the technical debt far outweighs the benefits, then you may have to replace the entire system. At this tipping point, you’re not getting value from the technical debt, and it has become a painful issue that’s causing your organisation lots of difficulties. For instance, you may be dealing with legacy software where fixing it to support future developments has simply become too complicated. The patches available may only resolve specific issues with the system, and still leave you with lots of technical debt. Here, the best way out is to replace the system in its entirety. 

 

Final thoughts

Every software company has some level of tech debt. Just like financial debt, it is useful when properly managed, and a problem when ignored or allowed to spiral out of control. It’s a tradeoff between design/development actions and business goals. By taking measures to pay down your organization’s debt and address its interest as it accrues, you will avoid situations where short term solutions undermine your long-term goals. This is also key to enable your business to transition to using complex IT solutions easier, and even make the migration between data centres much smoother. These 8 measures will enable you to manage your technical debt better to prevent it from being the bottleneck that stifles your growth.

Ready to work with Denizon?