Spreadsheet Woes – Burden in SOX Compliance and Other Regulations

End User Computing (EUC) or end User Developed Application (UDA) systems like spreadsheets used to be ideal ad-hoc solutions for data processing and financial reporting. But those days are long gone.

Today, due to regulations like the:

  • Sarbanes-Oxley (SOX) Act,
  • Dodd-Frank Act,
  • IFRS (International Financial Reporting Standards),
  • E.U. Data Protection Directive,
  • Basel II,
  • NAIC Model Audit Rules,
  • FAS 157,
  • yes, there?s more ? and counting

a company can be bogged down when it tries to comply with such regulations while maintaining spreadsheet-reliant financial and information systems.

In an age where regulatory compliance have become part of the norm, companies need to enforce more stringent control measures like version control, access control, testing, reconciliation, and many others, in order to pass audits and to ensure that their spreadsheets are giving them only accurate and reliable information.

Now, the problem is, these control measures aren’t exactly tailor-made for a spreadsheet environment. While yes, it is possible to set up a spreadsheet and EUC control environment that utilises best practices, this is a potentially expensive, laborious, and time-consuming exercise, and even then, the system will still not be as foolproof or efficient as the regulations call for.

Testing and reconciliation alone can cost a significant amount of time and money to be effective:

  1. It requires multiple testers who need to test spreadsheets down to the cell level.
  2. Testers will have to deal with terribly disorganized and complicated spreadsheet systems that typically involve single cells being fed information by other cells in other sheets, which in turn may be found in other workbooks, or in another folder.
  3. Each month, an organisation may have new spreadsheets with new links, new macros, new formulas, new locations, and hence new objects to test.
  4. Spreadsheets rarely come with any kind of supporting documentation and version control, further hampering the verification process.
  5. Because Windows won’t allow you to open two Excel files with the same name simultaneously and because a succession of monthly-revised spreadsheets separated by mere folders but still bearing the same name is common in spreadsheet systems, it would be difficult to compare one spreadsheet with any of its older versions.

But testing and reconciliation are just two of the many activities that make regulatory compliance terribly tedious for a spreadsheet-reliant organisation. Therefore, the sheer intricacy of spreadsheet systems make examining and maintaining them next to impossible.

On the other hand, you can’t afford not to take these regulations seriously. Non-compliance with regulatory mandates can have dire consequences, not the least of which is the loss of investor confidence. And when investors start to doubt the management’s capability, customers will start to walk away too. Now that is a loss your competitors will only be too happy to gain.

Learn more about our server application solutions and discover a better way to comply with regulations.

More Spreadsheet Blogs


Spreadsheet Risks in Banks


Top 10 Disadvantages of Spreadsheets


Disadvantages of Spreadsheets – obstacles to compliance in the Healthcare Industry


How Internal Auditors can win the War against Spreadsheet Fraud


Spreadsheet Reporting – No Room in your company in an age of Business Intelligence


Still looking for a Way to Consolidate Excel Spreadsheets?


Disadvantages of Spreadsheets


Spreadsheet woes – ill equipped for an Agile Business Environment


Spreadsheet Fraud


Spreadsheet Woes – Limited features for easy adoption of a control framework


Spreadsheet woes – Burden in SOX Compliance and other Regulations


Spreadsheet Risk Issues


Server Application Solutions – Don’t let Spreadsheets hold your Business back


Why Spreadsheets can send the pillars of Solvency II crashing down

?

Advert-Book-UK

amazon.co.uk

?

Advert-Book-USA

amazon.com

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Saving Energy Step 2 ? More Practical Ideas

In my previous blog, we wrote about implementing a management system. This boils down to sharing a common vision up and down and across the organisation, measuring progress, and pinning accountability on individuals. This time, we would like to talk about simple things that organisations can do to shrink their carbon footprints. But first let’s talk about the things that hold us back.

When we take on new clients we sometimes find that they are baffled by what I call energy industry-speak. We blame this partly on government. We understand they need clear definitions in their regulations. It’s just a pity they don’t use ordinary English when they put their ideas across in public forums.

Consultants sometimes seem to take advantage of these terms, when they roll words like audit, assessment, diagnostic, examination, survey and review across their pages. Dare we suggest they are trying to confuse with jargon? We created ecoVaro to demystify the energy business. Our goal is to convert data into formats business people understand. As promised, here are five easy things your staff could do without even going off on training.

  1. Right-size equipment? outsource peak production in busy periods, rather than wasting energy on a system that is running at half capacity mostly.
  2. Re-Install equipment to OEM specifications ? individual pieces of equipment need accurate interfacing with larger systems, to ensure that every ounce of energy delivers on its promise.
  3. Maintain to specification ? make sure machine tools are within limits, and that equipment is well-lubricated, optimally adjusted and running smoothly.
  4. Adjust HVAC to demand ? Engineers design heating and ventilation systems to cope with maximum requirements, and not all are set up to adapt to quieter periods. Try turning off a few units and see what happens.
  5. Recover Heat ? Heat around machines is energy wasted. Find creative ways to recycle it. If you can’t, then insulate the equipment from the rest of the work space, and spend less money cooling the place down.

Well that wasn’t rocket science, was it? There are many more things that we can do to streamline energy use, and coax our profits up. This is as true in a factory as in the office and at home. The power we use is largely non-renewable. Small savings help, and banknotes pile up quickly.

Systems Integration as a means to cost reduction

System integration in an organisation refers to a process whereby two or more separate systems are brought together for the purpose of pooling the value in the separate systems into one main system. A key component of process consolidation within any organisation is the utilisation of IT as a means to achieve this end. As such, system integration as a means to cost reduction offers organisations the opportunity to adopt and implement lean principles with the attendant benefits. The implementation of lean techniques requires an adherence to stated methods to facilitate the elimination of wastage in the production of goods and services. In summary, the lean philosophy seeks to optimise the speed of good and service production, through the elimination of waste.

While analysing some of the traditional sources of waste in organisational activities, things like overproduction, inventory, underutilised ideas, transmission of information and ideas, transportation of people and material, time wastage and over-processing stand out. The fact is that companies can eliminate a significant portion of waste through the utilisation of IT to consolidate processes within their organisation.

Adopting lean principles calls for the identification of all of the steps in the company value stream for each product family for the purpose of the eliminating the steps that do not create any value. In other words, this step calls for the elimination of redundant steps in the process flow. This is exactly what the utilisation of IT to consolidate processes offers a company. For instance, the adoption of a central cloud system across a large organisation with several facilities could increase efficiencies in that company. Such a company would drastically reduce the redundancies that used to exist in the different facilities, eliminate the instances of hardware and software purchase, maintenance and upgrade, modernise quality assurances processes and identify further opportunities for improvement.

Perhaps, from the company’s point of view, and from the perspective of lean process implementation, the most important factor is?the effect it has?on the bottom line.’reducing the number of hardware, eliminating the need for maintaining and upgrading hardware, removing the necessity for software purchase and upgrade across facilities also contributes to a significant reduction in operational costs.?This reduction in the cost of operations leads to a corresponding increase in the profit margin of the company.

Applying system integration as a means to cost reduction can also lead to the reduction in the number of people needed to operate the previous systems that have been integrated into one primary unit. Usually, companies must hire people with specialised knowledge to operate and maintain the various systems. Such employees must also receive special training and frequent ongoing education to constantly stay informed of the latest trends in process management. With the integration of the system, the number of people needed to maintain the central system will be significantly reduced, also improving the security of information and other company trade secrets.

Based on an analysis of the specific needs that exist in a particular company environment, a system integration method that is peculiar to the needs of that organisation will be worked out. Some companies may find it more cost-effective to use the services of independent cloud service providers. Others with more resources and facilities may decide to set up their own cloud service systems. Often, private cloud service system capabilities far exceed the requirements of the initiating company, meaning that they could decide to “sell” the extra “space” on their cloud network to other interested parties.

A company that fully applies the lean principles towards the integration of its systems will be able to take on additional tasks as a result of the system consolidation. This leads to an increase in performance, and more efficiency due to the seamless syncing of information in a timely and uniform manner.

Companies have to combine a top-down and a bottom-up approach towards their system integration methods. A top-down approach simply utilises the overall system structure that is already in place as a starting point, or as a foundation. The bottom-up approach seeks to design new systems for integration into the system. Other methods of system integration include the vertical, star and horizontal integration methods. In the horizontal method, a specified subsystem is used as an interface for communication between other subsystems. For the star system integration method, the subsystems are connected to the system in a manner that resembles the depiction of a star; hence, the name. Vertical integration refers to the method of the integration of subsystems based on an analysis of their functionality.

The key to successful system integration for the purpose of cost reduction is to take a manual approach towards identifying the various applicable lean principles, with respect to the system integration process. For instance, when value has been specified, it becomes easier to identify value streams. The other process of removing unnecessary or redundant steps will be easier to follow when the whole project is viewed from the whole, rather than’the part. Creating an integrated system needs some?patience?in order to work out kinks and achieve the desired perfect value that creates no waste.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Energy Management Tips

Energy management is of interest to various stakeholders; be it heads of facilities, heads of procurement, heads of environment and sustainability, financial officers, renewable energy managers and heads of energy. Some of the energy management tips that can be used to achieve considerable energy savings are:

1) Purchasing energy supplies at the lowest possible price

2) Managing energy use at peak efficiency

3) Utilising the most appropriate technology

1. Purchasing energy supplies at the lowest possible price
Purchasing energy supplies at the lowest possible price could be the starting point to great savings of energy costs. This can be achieved through switching your energy supplier. It is always advisable for companies to always take time to compare the energy tariffs to ensure they are on the best tariff and make great savings.

2. Managing energy use at peak efficiency

(a) Free help

There are some online tools that offer energy-efficiency improvements. These could come in handy in helping someone find out where to make energy-efficiency improvements.

(b) Energy monitors

An energy monitor is a gadget that estimate in real time how much energy you’re using. This can help one see where to cut back on energy consumption.

(c) Turning down thermostats

Turning down radiators especially in rooms that are rarely used/empty rooms or programming the heating to turn off when no one is there can go a long way in saving energy and energy costs.

(d) Use energy saving bulbs

Use of energy-saving light bulbs can cut down on energy usage drastically. Replacing all the light bulbs with energy-saving ones could make significant savings on energy usage and replacement costs since energy saving bulbs also have a longer life.

(e) Switching off unnecessary lights

It is also important to switch off lights that are not in use and to use the best bulb for the size of room.

(f) Sealing all heat escape routes

It is recommended that all gaps should be sealed in order to stop heat from escaping. Some of the heat escape routes are: windows, doors, chimneys and fireplaces, floorboards and skirting and loft hatches. The ways through which this can be achieved are:

? Windows- use of draught-proofing strips around the frame, brush strips work better for sash windows

? Doors – use of draught-proofing strips for gaps around the edges and brush or hinged-flap draught excluders on the bottom of doors

? Chimney and fireplace – inflatable cushions can be used to block the chimney or fit a cap over the chimney pot on fireplaces that are not used often

? Floorboards and skirting – Using a flexible silicon-based filler to fill the gaps

? Loft hatches – the use of draught-proofing strips can help to prevent hot air escaping
It is also important to consider smaller holes of air such as keyholes and letterboxes.

3. Utilising the most appropriate technology
Utilisation of technology as an energy management tool can be by way of choosing more energy efficient gadgets and by way of running technological gadgets in an energy efficient manner.

Ready to work with Denizon?