Spreadsheet Woes – Burden in SOX Compliance and Other Regulations

End User Computing (EUC) or end User Developed Application (UDA) systems like spreadsheets used to be ideal ad-hoc solutions for data processing and financial reporting. But those days are long gone.

Today, due to regulations like the:

  • Sarbanes-Oxley (SOX) Act,
  • Dodd-Frank Act,
  • IFRS (International Financial Reporting Standards),
  • E.U. Data Protection Directive,
  • Basel II,
  • NAIC Model Audit Rules,
  • FAS 157,
  • yes, there?s more ? and counting

a company can be bogged down when it tries to comply with such regulations while maintaining spreadsheet-reliant financial and information systems.

In an age where regulatory compliance have become part of the norm, companies need to enforce more stringent control measures like version control, access control, testing, reconciliation, and many others, in order to pass audits and to ensure that their spreadsheets are giving them only accurate and reliable information.

Now, the problem is, these control measures aren’t exactly tailor-made for a spreadsheet environment. While yes, it is possible to set up a spreadsheet and EUC control environment that utilises best practices, this is a potentially expensive, laborious, and time-consuming exercise, and even then, the system will still not be as foolproof or efficient as the regulations call for.

Testing and reconciliation alone can cost a significant amount of time and money to be effective:

  1. It requires multiple testers who need to test spreadsheets down to the cell level.
  2. Testers will have to deal with terribly disorganized and complicated spreadsheet systems that typically involve single cells being fed information by other cells in other sheets, which in turn may be found in other workbooks, or in another folder.
  3. Each month, an organisation may have new spreadsheets with new links, new macros, new formulas, new locations, and hence new objects to test.
  4. Spreadsheets rarely come with any kind of supporting documentation and version control, further hampering the verification process.
  5. Because Windows won’t allow you to open two Excel files with the same name simultaneously and because a succession of monthly-revised spreadsheets separated by mere folders but still bearing the same name is common in spreadsheet systems, it would be difficult to compare one spreadsheet with any of its older versions.

But testing and reconciliation are just two of the many activities that make regulatory compliance terribly tedious for a spreadsheet-reliant organisation. Therefore, the sheer intricacy of spreadsheet systems make examining and maintaining them next to impossible.

On the other hand, you can’t afford not to take these regulations seriously. Non-compliance with regulatory mandates can have dire consequences, not the least of which is the loss of investor confidence. And when investors start to doubt the management’s capability, customers will start to walk away too. Now that is a loss your competitors will only be too happy to gain.

Learn more about our server application solutions and discover a better way to comply with regulations.

More Spreadsheet Blogs


Spreadsheet Risks in Banks


Top 10 Disadvantages of Spreadsheets


Disadvantages of Spreadsheets – obstacles to compliance in the Healthcare Industry


How Internal Auditors can win the War against Spreadsheet Fraud


Spreadsheet Reporting – No Room in your company in an age of Business Intelligence


Still looking for a Way to Consolidate Excel Spreadsheets?


Disadvantages of Spreadsheets


Spreadsheet woes – ill equipped for an Agile Business Environment


Spreadsheet Fraud


Spreadsheet Woes – Limited features for easy adoption of a control framework


Spreadsheet woes – Burden in SOX Compliance and other Regulations


Spreadsheet Risk Issues


Server Application Solutions – Don’t let Spreadsheets hold your Business back


Why Spreadsheets can send the pillars of Solvency II crashing down

?

Advert-Book-UK

amazon.co.uk

?

Advert-Book-USA

amazon.com

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

How DevOps Could Change Your Business

Henry Ford turned the U.S. auto industry on its head when he introduced the idea of prefabricating components at remote sites, and then putting them together on a production line. Despite many industries following suit, software lagged behind until 2008, when Andrew Clay Shafer and Patrick Debois told the Agile Conference there was a better way to develop code:
– Write the Code
– Test the Code
– Use the Code
– Evaluate, Schedule for Next Review

The term ?DevOps? is short for Development and Operations. It first appeared in Belgium, where developers refined Shafer and Depois? ideas. Since then, DevOps became a counter movement against the belief that software development is a linear process and has largely overwhelmed it.

DevOps – A Better Way

DevOps emerged at an exciting time in the IT industry, with new technology benefiting from a faster internet. However, the 2008 world recession was also beginning to bite. Developers scampered to lower their human resource costs and get to market sooner.

The DevOps method enabled them to colloborate across organizational boundaries and work together to write, quality assure and performance test each piece of code produced in parallel.
DevOps? greater time-efficiency got them to market sooner and helped them steal a march on the competition.

There are many advantages to DevOps when we work in this collaborative way. Cooperation improves relationships between developers, quality assurers and end users. This helps ensure a better understanding of the other drivers and a more time-effective product.

Summary of DevOps Objectives

DevOps spans the entire delivery pipeline, and increases the frequency with which progress is reviewed, and updates are deployed. The benefits of this include:

? Faster time to market and implementation

? Lower failure rate of new releases

? Shortened lead time for bug fixes and updates

The Psycho-Social Implications of DevOps

DevOps drills through organization borders and traditional work roles. Participants must welcome change and take on board new skills. Its interdepartmental approach requires closer collaboration across structural boundaries and greater focus on overarching business goals.

Outsourcing the detail to freelancers on the Internet adds a further layer of opportunity. Cultures and time zones vary, requiring advanced project management skills. Although cloud-based project management software provides adequate tools, it needs an astute mind to build teams that are never going to meet.

The DevOps movement is thus primarily a culture changer, where parties to a project accept the good intentions of their collaborators, while perhaps tactfully proposing alternatives. There is more to accepting a culture than using a new tool. We have to blend different ways of thinking together. We conclude by discussing three different methods to achieve this.

Three Ways to Deploy DevOps in your?Organisation

If you foresee regular DevOps-based projects, consider running your entire organisation through an awareness program to redirect thinking. This will help non-participants understand why DevOps members may be ?off limits? when they are occupied with project work. Outsourcing tasks to contracting freelancers can mitigate this effect.

There are three implementation models associated with DevOps although these are not mutually exclusive.

? Use systems thinking. Adopt DevOps as company culture and apply it to every change regardless of whether the process is digital, or not

? Drive the process via increased understanding and feedback from key receivers. Allow this to auto-generate participative DevOps projects

? Adopt a continuous improvement culture. DevOps is not only for mega upgrades. Feedback between role players is paramount for success everywhere we go.

You can use the DevOps concept everywhere you go and whenever you need a bridge to better understanding of new ideas. We diminish DevOps when we restrict its usefulness to the vital role it plays in software development. The philosophy behind it belongs in every business.

How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Heijunka is & How it Smooths Call Centre Production

The Japanese word Heijunka, pronounced hi-JUNE-kuh means ?levelling? in the sense of balancing workflows. It helps lean organizations shift priorities in the face of fluctuating customer demand. The goal is to have the entire operation working at the same pace throughout, by continuously adjusting the balance between predictability, flexibility, and stability to level out demand.

Henry Ford turned the American motor manufacturing industry upside down by mass-producing his iconic black motor cars on two separate production lines. In this photograph, body shells manufactured upstairs come down a ramp and drop onto a procession of cars almost ready to roll in 1913.

Smoothing Production in the Call Centre Industry

Call Centres work best in small teams, each with a supervisor to take over complex conversations. In the past, these tended to operate in silos with each group in semi-isolation representing a different set of clients. Calls came through to operators the instant the previous ones concluded. By the law of averages, inevitably one had more workload than the rest at a particular point in time as per this example.

Modern telecoms technology makes it possible to switch incoming lines to different call centre teams, provided these are multi-skilled. A central operator controls this manually by observing imbalanced workflows on a visual system called a Heijunka Box. The following example comes from a different industry, and highlights how eight teams share uneven demand for six products.

This departure from building handmade automobiles allowed Henry to move his workforce around to eliminate bottlenecks. For example, if rolls of seat leather arrived late he could send extra hands upstairs to speed up the work there, while simultaneously slowing chassis production. Ford had the further advantage of a virtual monopoly in the affordable car market. He made his cars at the rate that suited him best, with waiting lists extending for months.

A Modern, More Flexible Approach

Forces of open competition and the Six Sigma drive for as-close-to-zero defects dictates a more flexible approach, as embodied in this image published by the Six Sigma organisation. This represents an ideal state. In reality, one force usually has greater influence, for example decreasing stability enforces a more flexible approach.

Years ago, Japanese car manufacturer Toyota moved away from batching in favour of a more customer-centric approach, whereby buyers could customise orders from options held in stock for different variations of the same basic model. The most effective approach lies somewhere between Henry Ford?s inflexibility and Toyota?s openness, subject to the circumstances at the moment.

A Worked Factory Example

The following diagram suggests a practical Heijunka application in a factory producing three colours of identical hats. There are two machines for each option, one or both of which may be running. In the event of a large order for say blue hats, the company has the option of shifting some blue raw material to the red and green lines so to have the entire operation working at a similar rate.

Predictability, Flexibility, and Stability at Call Centre Service

The rate of incoming calls is a moving average characterised by spikes in demand. Since the caller has no knowledge whether high activity advisories are genuine, it is important to service them as quickly as possible. Lean process engineering provides technology to facilitate flexibility. Depending on individual circumstances, each call centre may have its own definition of what constitutes an acceptably stable situation.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?