Why integrating your Field Service Management with IoT Applications makes sense

Your customers want a smooth experience when hiring your services. Whether there are pests that have run amok in their homes and you have been called in to exterminate them, there is a leak in the pipes and your plumbing repair business is the go-to for repairs, you’re in charge of a cleaning business with clients spanning across the residential and commercial niches, or even a locksmith making new installations and providing aftercare for their clients ? it is vital to make the process as hassle-free as possible for your customer. The priority is getting the job done in time, and to quality standards. On the other hand, your mobile workers need access to complete and accurate data to approach the task more proactively, get it done right, and increase the rate of first-time fixes.

When you have multiple clients and a huge workforce, things can get messy with all the paperwork involved. Preparing documents and reports, keying in the data, keeping track of your mobile employees, following up on current jobs and scheduling new appointments ? the workload can put a strain on your staff. Field service scheduling software like FieldElite come in to keep your central office staff abreast with all customer details, sending alerts when new issues arise. These are then relayed to the appropriate technician for the situation to be taken care of at the earliest possible time ? directing the right employee to the customer based on the skill-set availability and location. While field service job management software, by itself, is a powerful solution, you can crank things up a notch by having a system that integrates IoT into its operations.

Powering Field Service Scheduling Software Systems With IoT

FSM gives maintenance firms, distributors, manufacturers and other service businesses an interactive platform that optimises the workflow. From the customers booking maintenance work, office staff tracking operations right from their desk, workers interacting with it while on-ground through the mobile app, to the billing and invoicing ? it is all handled through the same system. IoT applications can boost this becoming a critical tool to show the field managers about the precise locations where attention is needed, for accurate worker and job scheduling and improved customer satisfaction. What if you could also have features like auto-scheduling coming on board? Let’s delve deeper into what it means for your FSM system.

Benefits Of Using Service Management Software With IoT Solutions

Its impact of IoT on field management is seen in the transformation of maintenance data into proactive service actions. Research by Gartner shows that in 2020 there will be over 20 billion connected devices, making the reach of IoT really vast. This will fuel the field management industry, unlocking more potential with the mobile workers interacting in real-time with their equipment and headquarters. This speeds up response time to service requests and transforms interoperability across the different devices.

???????? All-round access

The interaction with IoT benefits the technicians, managers, and customers themselves. For instance, while the worker on ground interacts with the FieldElite mobile app, the office staff at headquarters will be engaging them via browser on their smart devices, and even the client gets access to the system through the customer portal.

???????? Linking your different business operations

It doesn’t stop there. Integrating the mobile service management software to the IoT facilitates inventory management, automobile tracking, and even automates accounting, invoicing, and other internal processes of the business, giving you more visibility over your field assets and operations. Here, the sensors that have been enabled in the network will notify you of damaged equipment, and go further to route and dispatch the technician who is most suited to go on-site and repair it.

???????? Nip things in the bud ? A proactive approach

Updates from sensors on the remote equipment are sent over a dedicated network. This is intelligently interpreted by the IoT platform to decide the next course of action, depending on a predefined set of rules. This course of action can be assigning and dispatching the technician through the FieldElite app to fix the equipment before permanent damage occurs. This whole process is automatic, shifting the company from a reactive mode of operations to a proactive and preventative model, resulting in better utilisation of assets.

???????? Minimise time wastage

Less time is spent going checking for flaws in the systems. Take management at a wastewater treatment plant for instance. Simply place IoT sensors on the different pumps, mortars and valves to give you this data. In case of leaks or damage, the appropriate operator is alerted, taking away the need for manual monitoring. Monitoring is done remotely. Hazardous situations such as in the oil and gas industry where workers are faced with issues like flare stacks are handled better, where the IoT sensors minimise downtime and ensure that only necessary visits to the plat equipment are done.

???????? Interactions at the palm of your hand

The field service workers are also equipped with effective communications through aspects like the chat feature on the mobile app, and reporting abilities where they can make notes, take photos and relay this to the headquarters during the course of the job. Information on the system is readily available to the customer and future technicians who will be handling jobs at the facility.

How does the FSM work with other systems? FieldElite’s core role is to manage the mobile workforce. How do you keep track of the sensors of the different equipment, in order to know when maintenance is needed?

Enter ecoVaro: IoT In Energy Management

The 2018-2025 Global Building Energy Management System Analysis and Forecast showed energy consumption in residential buildings accounts for close to 40% of the world’s energy consumption.? Commercial buildings like shopping malls, hospitals, retail stores and hotels take 30%. IoT tools aid in collecting and analysing the real-time data consumption in these falsities, to improve maintenance and reduce down times. It’s a holistic view that is achieved through a network of smart devices monitoring the ventilation, humidity, air-conditioning and lighting systems.

Home automation tools like smart thermostats and bulbs are already becoming popular. Here, they bring savings to the consumers without them having to use up much effort. For broader energy management, these systems will include units like sensors, controls, meters, data analytics tools, and user-friendly applications that the consumers access all this from. It cuts across the board, from households and commercial establishments, to utility firms and government bodies keen on effectively monitoring and managing their energy resources. Industrial and commercial users need data analytics tools to maximise their productivity and reduce costs, while residents in households want to reduce their monthly bills and take a more proactive role in their energy management.

From Smart Devices To Accurate Loggers

The first step in saving energy is cutting down wastage. Smart light, humidity, temperature and air conditioning controls come in to maintain optimal indoor conditions. Lighting units, smart thermostats, sensor-based HVAC control systems are part of the IoT, taking centre stage in automatically maintaining the perfect indoor environment that will keep the building?s energy use at optimum levels. They have been designed with different sensors that check the humidity, light, motion and even CO2 levels, dynamically adjusting the conditions in the facility. Here, you have situations like smart lights dimming when there is more daylight getting into the room, and then automatically turning off when people leave the room. The smart thermostats can precool the indoor space before the day gets warmer, so that during that scorching midday sun there will be less energy spent by the HVCA to bring down the heat levels.

The whole set up ? from the LED lights adjusting to user preferences and routines, learning thermostats that reduce consumption during peak load times, sensors and data analytics that give the user more control over their consumption, creates a smart energy infrastructure, be it in homes or industrial spaces, from retail stores and factories, to entire cities. This is all geared at cutting down energy costs, with the systems automatically adjusting the building?s lighting, temperature and ventilation, to reduce the energy consumption without compromising the comfort of the building?s occupants. LEED bulbs already record 20% lower maintenance costs than the typical commercial buildings.

Adopting IoT Applications For Your EMS System

How can you take advantage of this? With the EMS loggers, you monitor your facility’s consummation in real-time. Platforms like ecoVaro enable both the utility companies and end-users to access this data. The utility firms will be in a position to tailor the power supply in response to changing demand and also adjust their pricing. The end-users, on the other hand, will be in a position to control their usage at a granular level ? responding to changing environmental conditions, power consumption, and reducing energy waste.

There are also those appliances that come with sensors, from boilers in the household, to heavy production machinery in industries. The EMS systems allow you to continuously monitor the load on the sensor-enabled assets, predict when overheating will occur and pinpoint risks of outages or damage on the line. Maintenance can then be immediately carried out to vent damages to the equipment. That way components like motors are protected from damages that would have ended up costing the firm lots of funds to replace. The data analytics from the EMS platforms enable the energy manager to strike that balance to optimise performance and reduce wear, thus prolonging the life of the equipment.

Even the heavy hitters in the energy sector get to benefit from the IoT. Take power production for instance. When you’re dealing with stations, solar farms and wind fields ? as they provide that much-needed power, they also consume energy and need plenty of maintenance. These are resource-heavy stations and as a manager, you want to keep a close eye on things. This involves a complex approach, from the sensors at the facilities, data analytics, to predictive maintenance. EMS software comes in to continuously monitor the equipment and wiring through the sensors. This enables you to prevent issues like overloads, and ensure that a balanced load is maintained on the line. The EMS goes a step further by enabling you to undertake predictive maintenance, for the timely repair of the equipment on the power grid, minimising accidents, preventing blackouts, and averting the costly down times.

Electricity utilities connecting their power plants and grids to available IoT solution networks get to be more transparent to their consumers, by showing them where the energy they use comes from. This empowers the consumers with the information needed to select the cleanest energy source during that period, which is particularly beneficial for those keen on adopting greener practices. For instance, you can have a system monitoring a network of grids, and dynamically shifting to power sources that have the least amount of emissions at the moment ? what’s gaining popularity as “automated emission reduction”. These lead to utility firms that produce clean energy getting more consumers and growing their revenue base.

Field And Energy Management: How FieldElite and ecoVaro Work Together Through IoT

So, on one hand, you have the energy managers following up on the consumption trends at their facilities, keeping an eye on their equipment.? On the other hand, you have field workers needed to carry out repair and maintenance works at different locations.? How do you join them together to ensure a seamless flow of operations?? The IoT.

This can be seen with ecoVaro and Field Elite interaction. Here, you have two independent systems that are interlinked through the internet and secure cloud systems, bringing more convenience on board for the users.

Picture this: Loggers collecting data from the meters and sensors on-site detect an anomaly, which you will immediately be able to view through the ecoVaro platform. This can be a myriad of issues, from plumbing to electrical systems that need to be worked on, and they are at multiple locations. How do you get them resolved? Dispatch your technicians through FieldElite.

Here’s a snapshot of how this works:

FieldElite and Ecovaro Working Together

This way, you get to optimise your operations and cut down on coasts ? taking advantage of the data analytics tools brought to you by ecoVaro, and streamlining your workflow through FieldElite. IoT powered workforce and energy management systems thus become key in reducing operational expenses, scheduling repairs and maintenance, and planning for peak hours

Accessing real-time data has the welcome benefit of cutting down on the hours spent on energy management processes. Jobs like meter reading that would have taken lots of time are handled by the system. When it comes to field management, operational efficiency is increased by taking away the manual processes involved with all the paperwork.? The sensors monitored via ecoVaro alert the field service manager about equipment that needs to be checked, and FieldElite shows the field manager issues that are on queue to be resolved. In both cases, you get accurate data that will inform the decisions made ? from the maintenance measures required, to scheduling the jobs for the technicians to handle them. It’s a win-win situation.?

Building Blocks For A Brighter Tomorrow

What’s more, this sets you up for the future. Adopting IoT solutions for your field and energy management operations will score you higher ROIs going forward. The global community is working towards enhancing the efficiency of its operations and putting in place sustainable practices in line with their Social Corporate Responsibility (CSR). This is from service providers like plumbing and electrical repair businesses, to utility firms and power generation plants. Lighting systems, homes, office buildings, factories, communities, transportation and whole cites are getting connected through the internet and more control done via smart devices. This is further accelerated by cloud systems enabling real-time, reliable and secure access to the information. By incorporating these setups into your business structure, you will gain a competitive advantage in your niche. After all, we’re still in the early stages of IoT across the industries.

Check our similar posts

Could Kanban Be?Best for Knowledge Workers?

Knowledge Workers include academics, accountants, architects, doctors, engineers, lawyers, software engineers, scientists and anybody else whose job it is to think for a living. They are usually independent-minded people who do not appreciate project managers dishing out detailed orders. Kanban project management resolves this by letting them choose the next task themselves.

The word ?Kanban? comes from a Japanese word meaning ?billboard? or ?signboard?. Before going into more detail how this works let’s first examine how Japanese beliefs of collaboration, communication, courage, focus on value, respect for people and a holistic approach to change fit into the picture.

The Four Spokes Leading to the Kanban Hub

  1. Visualise the Workflow ?You cannot improve what you cannot see. The first step involves team members reducing a project to individual stages and posting these on a noticeboard.
  2. Create Batches ? These stages are further reduced to individual tasks or batches that are achievable within a working day or shift. More is achievable when we do not have to pick up where we left off the previous day.
  3. Choose a Leader the Team Respects – Without leadership, a group of people produces chaotic results. To replace this with significant value they need a leader, and especially a leader they can willingly follow.
  4. Learn and Improve Constantly ? Kaizen or continuous improvement underpins the Japanese business model, and respects that achievement is a step along the road, and not fulfilment.

The Kanban Method in Practice

Every Kanban project begins with an existing process the participants accept will benefit from continuous change. These adjustments should be incremental, not radical step-changes to avoid disrupting the stakeholders and the process. The focus is on where the greatest benefits are possible.

Anybody in the team is free to pull any batch from the queue and work on it in the spirit of collaboration and cooperation. That they do so, should not make any waves in a culture of respect for people and a holistic approach to working together. All it needs is the courage to step out of line and dream what is possible.

The Kanban Project Method ? Conclusions and Thoughts

Every engine needs some sort of fuel to make it go. The Kanban project management method needs collaboration, communication, courage, focus on value, respect for people and a holistic approach to work. This runs counter to traditional western hierarchies and probably limits its usefulness in the West.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Energy Audit – clearly clear?

An energy audit is an examination of an energy system to ensure that energy is being used efficiently. It is the inspection, survey and analysis of energy flows for energy conservation in a building. Energy audits can be conducted by building managers who examine the energy account of an energy system, checks the way energy is used in its various components, checks for areas of inefficiency or where less energy can be used, and identifies the means for improvement.

An energy audit is often used to identify cost effective ways to improve the comfort and efficiency of buildings. In addition, homes/ enterprises may qualify for energy efficiency grants from central government. Energy audits seek to prioritise the energy uses from the greatest to least cost effective opportunities for energy savings.

An energy audit is an effective energy management tool. By identifying and implementing improvements as identified, savings can be achieved not only on energy bills, but also equipment will be able to attain a longer life under efficient operation. All these mean actual dollar savings.

An energy audit has to be conducted by a competent person with adequate technical knowledge on building services installations, after which he/she comes up with a report recommending plans on the Energy Management Opportunities (EMO) for energy saving.

An energy audit culminates to a written report. This could show energy use for a given time period (for example a year) and the impact of any suggested improvements per year. Energy audit reports are then used to identify cost effective ways to improve the comfort and efficiency of buildings. The energy audit report therefore gives management an understanding of the energy consumption scenario and energy saving plans formulation.
Energy audit reports should always translate into action. No matter how well articulated, the energy management objectives are afterall, an energy audit (EMOs), all the effort will be futile if no action is taken. The link between the audit and action is the audit report. It is therefore important for the audit reports to be understandable for all the target audiences/ readers, all of whom may have diverse needs, hence the reason why they should be clear, concise and comprehensible.

What are the do?s and don’ts when writing energy audit reports?

Avoid technical jargon as much as possible; present information graphically; use different graphics such as pie charts, data tables. Schematics of equipment layouts and digital photos tend to make EMO reports less dry. Some of the energy audit software?s come in handy in the generation of such graphs and charts.
The climax of it all is the recommendations, which should be made very fascinating.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Introduction to Matrix Management

A leader is responsible to empower his people and get the best out of them. Yet an organisational structure can either help or hamper performance. Worst, it can make or break success.

Looking at the fast-changing world of the global economy, whatsoever slows up and obstructs decision-making is a challenge. Hierarchical management is rather unattractive and functional silos are unlikable. Instead, employees desire to create teams equipped with flexibility, cooperation and coordination.

Recognising that companies have both vertical and horizontal chains of command, the matrix model is created. The concept of this principle lies in the ability to manage the collaboration of people across various functions and achieve strategic objectives through key projects.

Consider this scenario:

Ian is a sales executive of a company. His role is to sell a new product under the supervision of a product manager. The manager is expert about the product and she is accountable to coordinate the people across the organisation, making sure the product is achieved.

Moreover, Ian also reports to the sales manager who oversees his overall performance, monitors his pay and benefits and guides his personal development.

Complicated it may seem but this set-up is common to companies that seek to maximise the effect of expert product managers, without compromising the function of the staffing overhead in control of the organisation. This is a successful approach to management known as Matrix Management.

Matrix Management Defined

Matrix management is a type of organisational management wherein employees of similar skills are shared for work assignments. Simply stated, it is a structure in which the workforce reports to multiple managers of different roles.

For example, a team of engineers work under the supervision of their department head, which is the engineering manager. However, the same people from the engineering department may be assigned to other projects where they report to the project manager. Thus, while working on a designated project, each engineer has to work under various managers to accomplish the job.

Historical Background

Although some critics say that matrix management was first adopted in the Second World War, its origins can be traced more reliably to the US space programme of the 1960’s when President Kennedy has drawn his vision of putting a man on the moon. In order to accomplish the objective, NASA revolutionised its approach on the project leading to the consequent birth of ?matrix organisation?. This strategic method facilitated the energy, creativity and decision-making to triumph the grand vision.

In the 1970’s, matrix organisation received huge attention as the only new form of organisation in the twentieth century. In fact it was applied by Digital Equipment, Xerox, and Citibank. Despite its initial success, the enthusiasm of corporations with regards to matrix organisation declined in the 1980’s, largely because it was complex.

Furthermore, the drive for motivating people to work creatively and flexibly has only strengthened. And by the 1990’s, the evolution of matrix management geared towards creation and empowerment of virtual teams that focused on customer service and speedy delivery.

Although all forms of matrix has loopholes and flaws, research says that until today, matrix management is still the leading approach used by companies to achieve organisational goals.

Ready to work with Denizon?