What Sub-Metering did for Nissan in Tennessee

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ?We’ve already squeezed the lemon dry,? they seemed to say. ?What makes you think there?s more to come??

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ?The only disadvantage of sub-metering is that now we can’t imagine doing without it.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Solutions to Password Overload

If only technologists had their way, passwords and PINs would have long been replaced with more innovative (and admittedly, better) security solutions. But such is not the case. Those alternative solutions, which include biometrics, smart cards, and password fobs, effective as they may be, are just way too expensive to implement.

So although passwords and PINs may not be here to stay, they certainly won’t be going away soon either.

Why keeping passwords in memory is no longer possible

A couple of decades ago, it would have been nearly impossible to crack an eight-character password using brute force. Today, however, advancements in computing power are rendering the typical passwords of the past easily decipherable, forcing us to come up with passwords that are not only much longer, but also much more complex and hence difficult to recall.

For instance, memorable words like your favourite character (e.g. ‘skywalker’) may have been acceptable then, but not anymore. Today?s security systems will encourage you to insert numbers or even other keyboard characters as a means to once again counter brute force. Hence, ‘sk5%ywa936lker@#’ may be more acceptable.

Remembering that one alone can be pretty daunting.

To further complicate matters, the number of applications that require passwords for access is much greater than before even for a single end user. Ordinary end users have to keep track of passwords for their email account, network login, workstation login, online services, and so on.

The burden is even greater for your IT admins, who have to remember a larger collection of passwords that protect business critical systems and applications. Clearly, the team in charge of your IT security will need a way to manage all these passwords.

Password management solutions

Existing password management solutions typically come in the form of software applications that store passwords. Basically, all you need to remember are your login details for the app a.k.a. the ?master password?. Once you’ve gained access inside, you can then retrieve any password you stored there.

Some of these apps are installed in portable devices like Pocket PCs, PDAs, or smartphones, which you would normally take along with you. For as long as the device stays with you, your passwords will be in safe hands. What’s more, you can retrieve them anywhere you go.

But obviously, there’s a problem. What if the device gets misplaced or stolen? Although the person who ends up with your device may not be able to gain access into the app and your passwords, neither will you. A better solution would therefore be an app that can be accessed anywhere but is not susceptible to getting lost.

Web-based password manager

A web-based password manager fits the bill. You don’t have to take it with you, but still you can access it almost anywhere. A typical web-based password manager will have all your passwords stored in a centralised, highly secure location.

If you want, you can even use your mobile password manager along with the web-based one. Ideally, your web-based password manager would have a copy of all the end-user passwords as well as the master passwords of your organisation.

With an easy to access but highly-secure web-based password manager, you no longer have to come up with passwords that (ironically) are supposed to be easy to remember but hard to crack at the the same time.

Furthermore, password managers are ideal for keeping passwords that have to be changed every-now-and-then; a requirement that’s becoming all too common in organisations bent on enforcing more stringent controls.

Technology and process improvement

Tightening organisational flow to improve productivity and minimise costs is a growing concern for many businesses post the Global Financial Crisis. Businesses can no longer afford to waste time and personnel on inefficient processes. Organisations using either Six Sigma or Lean techniques better manage their existing resources to maximise product out-put. Both of these techniques involve considerable evaluation of current processes.

What is Six Sigma?

Six Sigma is an organisational management strategy that evaluates processes for variation. In the Six Sigma model, variation equates waste. Eliminating variation for customer fulfilment allows a business to better serve the end-user. In this thought model, the only way to streamline processes is to use statistical data. Each part of a process must be carefully recorded and analysed for variation and potential improvements. The heart of the strategy embodied by Six Sigma is mathematical. Every process is subject to mathematical analysis and this allows for the most effective problem solving.

What is a Lean Model?

Lean businesses do not rely on mathematical models for improvement. Instead, the focus is on reducing steps in the customer delivery cycle, which do not add value to the final deliverable. For example, maintaining excess inventory or dealing with shortages would both be examples of waste behaviour. Businesses that operate using Lean strategies have strong cash flow cycles. One of the best and most famous examples of Lean in action is the Toyota Production System (TPS). In this system, not only is inventory minimised, but physical movement for employees also remains sharply controlled. Employees are able to reach everything needed to accomplish their tasks, without leaving the immediate area. By reducing the amount of movement needed to work, companies also remove wasted employee time.

Industry Applications for Lean and Six Sigma

Lean businesses reduce the number of steps between order and delivery. The less inventory on hand, the less it costs a business to operate. In industries where it is possible to create to order, Lean thinking offers significant advantages. Lean is best utilised in mature businesses. New companies, operating on a youthful model, may not be able to identify wasteful processes. Six Sigma has shown its value across industries through several evolution’s. Its focus on quality of process makes it a good choice for even brand new businesses. The best use is the combination of the two strategies. With the Lean focus on speed and the Six Sigma focus on quality combined, the two organisational processes create synergy. By itself, Lean does not help create stable, repeating success. Six Sigma does not help increase speed and reduce non value-added behaviours. Combined, these two strategies offer incredible value to every business in cost savings.

Using Technology to Implement Lean Six Sigma

Automation processes represent an opportunity for businesses to implement a combination of both Lean and Six Sigma strategies. Any technology that replaces the need for direct human oversight reduces costs and increases productivity. A few examples of potentially cost saving IT solutions include document scanning, the Internet, and automated workflow systems.

  • Document Scanning – Reducing dependency on paper copies follows both Lean and Six Sigma strategies. It is a Lean addition in that it allows employees to access documents instantly from any physical location. It is Six Sigma compliant in that it allows a reduction on process variation, since there is no bottleneck on the flow of information.
  • The Internet – The automation potential offered by the Internet is limitless. Now, businesses can enter orders, manage logistics and perform customer service activities from anywhere, through a hosted portal. With instant access to corporate processes from anywhere, businesses can manage workflow globally, allowing them to realise cost savings from decentralisation.
  • Automated Work Systems – One of the identified areas of waste in any business is processing time. The faster orders are processed and delivered, the greater the profits for the company and the less the expense per order. When orders sit waiting for attention, they represent lost productivity and waste. Automated work systems monitor workflow and alert users when an item sits longer than normal. These systems can also reroute work to an available employee when the original worker is tied up.

Each of these IT solutions provides a method for businesses to either reduce the number of steps in a process or improve the quality of the process for improved customer service.

Identifying Areas for Lean Six Sigma Implementation

Knowing that improved processes result in improved profits, identifying areas for improvement is the next step. There are several techniques for creating tighter processes with less waste and higher quality. Value Stream Mapping helps business owners and managers identify areas of waste by providing a visual representation of the total process stream. Instead of improving single areas for minimal increases in productivity, VSM shows the entire business structure and flow, allowing management to target each area of slow down for maximum improvement in all areas.

Seeing the areas of waste helps management better determine how processes should work to best obtain the desired outcomes. Adding in automated processes helps with improved process management, when put in place with a complete understanding of current systems and their weaknesses. Start with mapping and gain a bird’s-eye view of the situation, in order to make the changes needed for improvement.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Malware

In the past, viruses were created with the sole purpose of wreaking havoc on the infected systems. A large fraction of today’s malware, on the other hand, are designed to generate revenues for the creator. Spyware, botnets, and keyloggers steal information from your system or control it so that someone else can profit. In other words, the motivation for making them is now more attractive than before.

Keyloggers can reveal your usernames, passwords, PIN numbers, and other authentication information to their creators by recording your key strokes. This information can then be used for breaking into various accounts: credit cards, payment programs (like PayPal), online banks, and others. You’re right, keyloggers are among the favourite tools of individuals involved in identity theft.

Much like the viruses of old, most present day malware drain the resources, such as memory and hard disk space, of contaminated systems; sometimes forcing them to crash. They can also degrade network performance and in extreme cases, may even cause a total collapse.

If that’s not daunting enough, imagine an outbreak in your entire organisation. The damage could easily cost your organisation thousands of euros to repair. That’s not even counting yet the value of missed opportunities.

Entry points for malware range from optical disks, flash drives, and of course, the Internet. That means, your doors could be wide open to these attacks at this very moment.

Now, we’re not here to promise total invulnerability, as only an unplugged computer locked up in a vault will ever be totally safe from malware. Instead, this is what we’ll do:

  • Perform an assessment of your computer usage practices and security policies. Software and hardware alone won’t do the trick.
  • Identify weak points as well as poor practices and propose changes wherever necessary. Weak points and poor practices range from the use of perennial passwords and keeping old, unused accounts to poorly configured firewalls.
  • Install malware scanners and firewalls and configure them for maximal protection with minimal effect on network and system performance.
  • Implement regular security patches.
  • Conduct a regular inspection on security policy compliance as well as a review of the policies to see if they are up to date with the latest threats.
  • Keep an audit trail for future use in forensic activities.
  • Establish a risk management system.
  • Apply data encryption where necessary.
  • Implement a backup system to make sure that, in a worst case scenario, archived data is safe.
  • Propose data replication so as to mitigate the after effects of data loss and to ensure your company can proceed with ‘business as usual’.

Once we’ve worked with you to make all these happen, you’ll be able to sleep better.

Other defences we’re capable of putting up include:

Ready to work with Denizon?