What Sub-Metering did for Nissan in Tennessee

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ?We’ve already squeezed the lemon dry,? they seemed to say. ?What makes you think there?s more to come??

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ?The only disadvantage of sub-metering is that now we can’t imagine doing without it.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Proactive Preventative Maintenance: How IoT and Field Service Management Software Helps

FieldElite, our mobile workforce management software, has been key to several industries? return on investment. Whether it’s for plumbing, electrical, property management, cleaning, and maintenance, FieldElite has provided data centralisation for efficient management of these business activities. 

Field service management software is important to utilise current workload, and also helps resolve future issues. We’re talking about a proactive approach to preventative maintenance. 

How exactly do field service managements help in preventative maintenance? 

The answer lies in how field service management is interlinked with IoT in predicting future jobs for the mobile service industry.  

What is IoT? 

Simply put, the Internet of Things (IoT) is a network of devices and sensors connected to the internet. These ?things? (e.g. your smartphone or smartwatch) enable data to be sent and be received without human intervention.

Fundamentally, IoT is about devices being connected to the internet to allow remote monitoring

For many years now, remote monitoring for IT infrastructure has been widely used. 

What’s new that we’re experiencing right now is even the smallest devices ? individual light bulbs and sensors ? can have a network and internet connection, allowing entire systems to be monitored in great detail. 

Implementing IoT and accessing data can be challenging for most service organisations. However, when combined with predictive analytics and field management software, it can have a huge potential impact on individual businesses and the service industry as a whole. 

What is Preventative Maintenance? 

Preventive maintenance refers to regular, routine maintenance to help keep equipment up and running, preventing any unplanned downtime and expensive costs from unanticipated equipment failure. 

The goal of preventative maintenance is to decrease the likelihood of a machine or an equipment’s failure by performing regular maintenance. 

Preventative management can be very complex, especially for companies with a fleet of equipment or customers. It requires careful planning and scheduling of maintenance on equipment before there is an actual problem. 

Also, preventive maintenance is evolving. It’s not just about scheduling the same work every month to prevent failure anymore. Today, working smarter with better information about equipment conditions is critical to ensure maintenance is effective.

That’s where IoT and field service management software, like FieldElite, comes in. Together, they organise and carry out preventive maintenance needs for service industries. 

How IoT and FieldElite Helps in Preventative Maintenance

With FieldElite and IoT technology, you get the best in preventive maintenance management.

  • Evaluation of equipment or machines ? the condition of machines or equipment is evaluated in order to predict when maintenance needs to be performed. 
  • Automated work order ? automated time-based work order creation
  • Full condition-based plans allows you to do the following:
    • Right-size your maintenance work
    • Lower costs
    • Extend the life of your or customer?s assets 
  • Quicker reporting ? due to its efficient and automated nature, IoT and field service management software can reduce a field technician?s average report time from two weeks to two days, therefore boosting your cash flow! 

That’s the most important result a mobile service management software can produce (in connection with preventative maintenance). It’s cost-saving! This can be achieved over routine or time-based preventive maintenance, as tasks are only performed when they are needed. 

The Internet of Things (IoT) and field service management software is changing field service as we know it. 

Companies who adapt and utilise these technologies will benefit the most from the resulting competitive advantage of preventative maintenance. 

Start elevating every field service experience now!  

Our field service software, FieldElite helps you: 
  • Accepts jobs in the field
  • Automate appointment scheduling
  • Manage scheduled jobs 
  • Get real-time visibility into all operations
  • Have a clear and easy viewing of job locations 
  • Resolve field service calls faster 
  • Enable mobile workers to get the job done right
  • Keep customers updated at every step 
  • Create quotations and accept payments 
  • Analyse efficient reports from field technicians
  • Helps in proper preventative maintenance management. 

Learn how to schedule jobs to field workers with ease. Check out FieldElite

CONTACT US

  • We seek to understand your technology and business challenges
  • We tailor a demonstration of our platform and solutions to align to your specific needs
  • We answer any questions and make sensible recommendations
  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Westin Melbourne Hotel Trimmed its Footprint

Becoming sustainable is a three-pronged process. You must save money and push the buttons the government is pressing you to. But there?s a deeper, more urgent issue. If your customers mark you down for not being green enough you are heading for trouble. Let’s see how well this hotel is doing.

The Melbourne flagship of the Westin hotel chain boasts 262 spacious rooms with views of Melbourne Square and surrounding theatres, designer boutiques, galleries and national landmarks. The architects included conference facilities, a wellness centre and sundry bars and restaurants. After climate change arrived to stay, hotel management discovered they had inherited a water and energy-greedy monster. Their solution was to measure what was going through their systems, and then progressively cap the building?s greedy appetite.

The Melbourne Westin Hotel could not have achieved results without these metrics. They began by determining key indicators and measuring them. This provided them with criteria to set achievable, cost effective targets in the following key areas of their business:

  1. Water Management ? Demand-based linen and towel recycling, installation of back-washable water filters, water-saving shower heads, dual-flush toilets.
  2. Waste Management ? Conversion to green products, recycling kitchen oil, moving towards a paperless office, recycling everything possible.
  3. Energy Management ? Energy-efficient light bulbs, standby settings for lights, computers, televisions and air conditioners
  4. Stakeholder Communication ? Staff green-team training, guest education, ongoing employee briefings
  5. Strategic Positioning ? Visible, top-down commitment, optimised carbon offsets from clean, renewable energy sources, clearly stated position in the market

Westin?s Melbourne landmark has made good progress towards becoming the green hotel for others to follow. It has adjusted its environmental policies, increased water and energy awareness and implemented tight waste management.

Consumers are already shopping to make their carbon footsteps lighter. Food stores are on the bandwagon although apparel is lagging. Perhaps it’s time you found out just how your company is shaping up. It’s no longer a matter of ?if carbon taxes?. It’s a matter of ?when it does?.

ecoVaro is a software system-in-the-cloud that lets you enter your water and energy consumption and process it online so you can monitor and manage your usage. In no time at all you could be saving money like Westin Melbourne did. Does that sound like something worth investigating?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?