The Matrix Management Structure

Organizations exploit matrix management in various ways. A company, for instance, that operates globally uses it at larger scale by giving consistent products to various countries internationally. A business entity, having many products, does not assign its people to each product full-time but assign those to different ones on a part time basis, instead. And when it comes to delivering high quality and low cost products, companies overcome industry pressures with the help of many overseeing managers. In a rapidly changing environment, organizations respond quickly by sharing information through a matrix model.

Understanding the Matrix Management Structure

A basic understanding of matrix management starts with the three key roles and responsibilities that applies in the structure.

  • Matrix Leader ? The common person above all the matrix bosses is the matrix leader. He ensures that the balance of power is maintained in the entire organization by delegating decisions and promoting collaboration among the people.
  • Matrix Managers ? The managers cooperate with each other by defining the respective activities that they are responsible for.
  • Matrix Employees – The employees have lesser direct authority but has more responsibilities. They resolve differing demands from more than one matrix managers while they work things out upwards. Their loyalty must be dual and their relationships with managers must be maintained.

Characteristics of a Matrix Structure

Here are some features that define the matrix management structure:

  • Hybrid Structure ?The matrix structure is a mix of functional and project organization. Since it is a combination of these two, matrix management is hybrid in nature.
  • Functional Manager ? When it comes to the technical phases of the project, the functional manager assumes responsibility. The manager decides on how to get the project done, delegates the tasks to the subordinates and oversees the operational parts of the organization.
  • Project Manager ? The project manager has full authority in the administrative phases, including the physical and financial resources needed to complete the project. The responsibilities of a project manager comprise deciding on what to do, scheduling the work, coordinating the activities to diverse functions and evaluating over-all project performance.
  • Specialization ?As the functional managers concentrate on the technical factors, the project managers focus on administrative ones. Thus, in matrix management, there is specialization.
  • Challenge in Unity of Command ? Companies that employs matrix management usually experience a problem when it comes to the unity of command. This is largely due to the conflicting orders from the functional and project managers.

Types of Matrix Structure

The matrix management structure can be classified according to the level of power of the project manager. Here are three distinct types of matrix structures that are widely used by organizations.

  • Weak Matrix ? The project manager has limited authority and power as the functional manager controls the budget of the project. His role is only part-time and more like a coordinator.
  • Strong Matrix ? Here, the project manager has almost all the authority and power. He controls the budget, holds the full time administrative project management and has a full time role.
  • Balanced Matrix ? In this structure type, both the project and functional managers control the budget of the project. The authority and power is shared by the two as well. Although the project manager has a full time role, he only has a part time authority for the administrative staff to report under his leadership.

Successful companies of today venture more on enhancing the abilities, skills, behavior and performances of their managers than the pursuit of finding the best physical structure. Indeed, learning the fundamentals of the matrix structure is essential to maximize its efficiency. A senior executive pointed out that one of the challenges in matrix management is not more of building a structure but in creating the matrix to the mind of the managers. This comes to say that matrix management is not just about the structure, it is a frame in the mind.

Check our similar posts

What is Business Intelligence?

How well do you know your customers? That is, can you actually pinpoint which among them are you most profitable with and which are making you spend more? Are you content with the accuracy of your forecasts and market predictions? Do you feel you’re spending more on legal costs and regulatory compliance than you should?

Your IT department may be handling these concerns pretty well but perhaps you’d like to know how you can further improve things.

What we’ve got is an IT solution wrapped in a fancy name called ‘Business Intelligence’ or BI. If you think that’s too strong a term, we invite you to read more below, then you be the judge.

Dashboards – Determine the health of your business at a glance

Most drivers rarely make use of their car’s dashboard. After all, you can still reach your destination by just using the steering wheel, pedals, gear stick and so on. But that’s not exactly the most efficient way to drive, right?

If you want to save on fuel, you’ll want to glance on the RPM and speedometer from time to time. You might also want to utilise the trip meter to determine which route is the shortest to a given destination. Other dashboard components like the fuel gauge, tire pressure gauge, engine temperature indicator, and volt meter can likewise provide information about your car’s health.

The same concept applies to business management. If you want to run your business intelligently, you can make use of BI dashboards. These are tools in a typical business intelligence package that will allow you to determine the health of your business via a set of smartly configured gauges and other intuitive graphical representations.

So that, literally, at a mere glance, you’ll already know whether various units in your company are working efficiently. A dashboard will also give you instant feedback of the strategies you’ve recently implemented; to let you know if things are working as planned.

If you want more information than a dashboard can provide, our BI packages also include highly customised reports.

Reports that help you decide faster

Dashboards are great for getting valuable information at a glance but they won’t tell you everything. For more details, you’ll need to view highly customised reports. Our reports are tailor made for each user. We see to it that, by default, each person gets the information he needs the most.

If you belong to the sales department, you normally won’t need a presentation of the data that is appropriate for people in accounting. That way, you don’t spend time filtering. Instead, you and your people can move on to making well-informed decisions.

Our BI systems make use of your vast collection of data to provide reports that will organise your regulatory requirements and call your attention to approaching deadlines. The same system will provide the right information for your people on the field. If your team members are equipped with smart phones and Pocket PCs, they can retrieve whatever it is they need to know to close deals, make sales, and serve clients faster than the competition.

Generating logical information from disparate sources of data scattered over an enterprise-wide organisation is no easy task. But we’ll make it look simple. That’s because we’ve got the expertise to bring it all together into a robust data warehouse and to extract them in the form of reports and dashboards through OLAP.

OLAP and Data Warehousing – Powering the generation of actionable information

Want to know how to generate reports with the highest degree of accuracy and reliability? In theory, what you need is a single repository or a data warehouse. That is, order receipts, sales invoices, as well as customer & supplier data is integrated with regulatory details, personnel data, and others. These are all specially organised for future reporting and analysis.

However, data, no matter how all-embracing, is useless until it is processed into actionable information. Through OLAP or Online Analytical Processing, you can seamlessly collect all relevant data from your vast repository to answer queries like “What is our company’s profitability for the 2nd quarter in all identified key cities for our top-of-the-line products?”.

The strength of OLAP lies in its inherent ability to perform data analysis and very complex calculations, thus enabling it to return complex queries much faster than other database technologies. It is therefore suitable for very large data sources, i.e., data warehouses.

Dashboards and reports will only give your organisation the edge if the information retrieved is reliable, fast, and accurate – exactly the kind OLAP is so good at.

Mobile BI – Step back and see the big picture anytime, anywhere

Spreadsheets are great for displaying detailed information. However, in today’s highly competitive market, retrieving information that matters the most in the shortest possible time is vital in maintaining a sizeable lead over the competition. To step back and see the big picture, you’ll need insightful tools like dashboards and automatically generated reports.

Reports can be beamed to mobile devices such as smart phones and Pocket PCs. They can also be viewed on eBook readers as well. You can also do the same tasks with spreadsheets. But imagine how you’d need to scroll over a large spreadsheet on any of these mobile devices just to know which customer in your current location has performed well over the last month.

If you really want to make quick, well-informed decisions, BI dashboards for mobile devices is the way to go. You can make use of various business objects such as drill-able charts, performance metrics, and metric trend graphs to make crucial decisions even when on you’re in the field.

Why integrating your Field Service Management with IoT Applications makes sense

Your customers want a smooth experience when hiring your services. Whether there are pests that have run amok in their homes and you have been called in to exterminate them, there is a leak in the pipes and your plumbing repair business is the go-to for repairs, you’re in charge of a cleaning business with clients spanning across the residential and commercial niches, or even a locksmith making new installations and providing aftercare for their clients ? it is vital to make the process as hassle-free as possible for your customer. The priority is getting the job done in time, and to quality standards. On the other hand, your mobile workers need access to complete and accurate data to approach the task more proactively, get it done right, and increase the rate of first-time fixes.

When you have multiple clients and a huge workforce, things can get messy with all the paperwork involved. Preparing documents and reports, keying in the data, keeping track of your mobile employees, following up on current jobs and scheduling new appointments ? the workload can put a strain on your staff. Field service scheduling software like FieldElite come in to keep your central office staff abreast with all customer details, sending alerts when new issues arise. These are then relayed to the appropriate technician for the situation to be taken care of at the earliest possible time ? directing the right employee to the customer based on the skill-set availability and location. While field service job management software, by itself, is a powerful solution, you can crank things up a notch by having a system that integrates IoT into its operations.

Powering Field Service Scheduling Software Systems With IoT

FSM gives maintenance firms, distributors, manufacturers and other service businesses an interactive platform that optimises the workflow. From the customers booking maintenance work, office staff tracking operations right from their desk, workers interacting with it while on-ground through the mobile app, to the billing and invoicing ? it is all handled through the same system. IoT applications can boost this becoming a critical tool to show the field managers about the precise locations where attention is needed, for accurate worker and job scheduling and improved customer satisfaction. What if you could also have features like auto-scheduling coming on board? Let’s delve deeper into what it means for your FSM system.

Benefits Of Using Service Management Software With IoT Solutions

Its impact of IoT on field management is seen in the transformation of maintenance data into proactive service actions. Research by Gartner shows that in 2020 there will be over 20 billion connected devices, making the reach of IoT really vast. This will fuel the field management industry, unlocking more potential with the mobile workers interacting in real-time with their equipment and headquarters. This speeds up response time to service requests and transforms interoperability across the different devices.

???????? All-round access

The interaction with IoT benefits the technicians, managers, and customers themselves. For instance, while the worker on ground interacts with the FieldElite mobile app, the office staff at headquarters will be engaging them via browser on their smart devices, and even the client gets access to the system through the customer portal.

???????? Linking your different business operations

It doesn’t stop there. Integrating the mobile service management software to the IoT facilitates inventory management, automobile tracking, and even automates accounting, invoicing, and other internal processes of the business, giving you more visibility over your field assets and operations. Here, the sensors that have been enabled in the network will notify you of damaged equipment, and go further to route and dispatch the technician who is most suited to go on-site and repair it.

???????? Nip things in the bud ? A proactive approach

Updates from sensors on the remote equipment are sent over a dedicated network. This is intelligently interpreted by the IoT platform to decide the next course of action, depending on a predefined set of rules. This course of action can be assigning and dispatching the technician through the FieldElite app to fix the equipment before permanent damage occurs. This whole process is automatic, shifting the company from a reactive mode of operations to a proactive and preventative model, resulting in better utilisation of assets.

???????? Minimise time wastage

Less time is spent going checking for flaws in the systems. Take management at a wastewater treatment plant for instance. Simply place IoT sensors on the different pumps, mortars and valves to give you this data. In case of leaks or damage, the appropriate operator is alerted, taking away the need for manual monitoring. Monitoring is done remotely. Hazardous situations such as in the oil and gas industry where workers are faced with issues like flare stacks are handled better, where the IoT sensors minimise downtime and ensure that only necessary visits to the plat equipment are done.

???????? Interactions at the palm of your hand

The field service workers are also equipped with effective communications through aspects like the chat feature on the mobile app, and reporting abilities where they can make notes, take photos and relay this to the headquarters during the course of the job. Information on the system is readily available to the customer and future technicians who will be handling jobs at the facility.

How does the FSM work with other systems? FieldElite’s core role is to manage the mobile workforce. How do you keep track of the sensors of the different equipment, in order to know when maintenance is needed?

Enter ecoVaro: IoT In Energy Management

The 2018-2025 Global Building Energy Management System Analysis and Forecast showed energy consumption in residential buildings accounts for close to 40% of the world’s energy consumption.? Commercial buildings like shopping malls, hospitals, retail stores and hotels take 30%. IoT tools aid in collecting and analysing the real-time data consumption in these falsities, to improve maintenance and reduce down times. It’s a holistic view that is achieved through a network of smart devices monitoring the ventilation, humidity, air-conditioning and lighting systems.

Home automation tools like smart thermostats and bulbs are already becoming popular. Here, they bring savings to the consumers without them having to use up much effort. For broader energy management, these systems will include units like sensors, controls, meters, data analytics tools, and user-friendly applications that the consumers access all this from. It cuts across the board, from households and commercial establishments, to utility firms and government bodies keen on effectively monitoring and managing their energy resources. Industrial and commercial users need data analytics tools to maximise their productivity and reduce costs, while residents in households want to reduce their monthly bills and take a more proactive role in their energy management.

From Smart Devices To Accurate Loggers

The first step in saving energy is cutting down wastage. Smart light, humidity, temperature and air conditioning controls come in to maintain optimal indoor conditions. Lighting units, smart thermostats, sensor-based HVAC control systems are part of the IoT, taking centre stage in automatically maintaining the perfect indoor environment that will keep the building?s energy use at optimum levels. They have been designed with different sensors that check the humidity, light, motion and even CO2 levels, dynamically adjusting the conditions in the facility. Here, you have situations like smart lights dimming when there is more daylight getting into the room, and then automatically turning off when people leave the room. The smart thermostats can precool the indoor space before the day gets warmer, so that during that scorching midday sun there will be less energy spent by the HVCA to bring down the heat levels.

The whole set up ? from the LED lights adjusting to user preferences and routines, learning thermostats that reduce consumption during peak load times, sensors and data analytics that give the user more control over their consumption, creates a smart energy infrastructure, be it in homes or industrial spaces, from retail stores and factories, to entire cities. This is all geared at cutting down energy costs, with the systems automatically adjusting the building?s lighting, temperature and ventilation, to reduce the energy consumption without compromising the comfort of the building?s occupants. LEED bulbs already record 20% lower maintenance costs than the typical commercial buildings.

Adopting IoT Applications For Your EMS System

How can you take advantage of this? With the EMS loggers, you monitor your facility’s consummation in real-time. Platforms like ecoVaro enable both the utility companies and end-users to access this data. The utility firms will be in a position to tailor the power supply in response to changing demand and also adjust their pricing. The end-users, on the other hand, will be in a position to control their usage at a granular level ? responding to changing environmental conditions, power consumption, and reducing energy waste.

There are also those appliances that come with sensors, from boilers in the household, to heavy production machinery in industries. The EMS systems allow you to continuously monitor the load on the sensor-enabled assets, predict when overheating will occur and pinpoint risks of outages or damage on the line. Maintenance can then be immediately carried out to vent damages to the equipment. That way components like motors are protected from damages that would have ended up costing the firm lots of funds to replace. The data analytics from the EMS platforms enable the energy manager to strike that balance to optimise performance and reduce wear, thus prolonging the life of the equipment.

Even the heavy hitters in the energy sector get to benefit from the IoT. Take power production for instance. When you’re dealing with stations, solar farms and wind fields ? as they provide that much-needed power, they also consume energy and need plenty of maintenance. These are resource-heavy stations and as a manager, you want to keep a close eye on things. This involves a complex approach, from the sensors at the facilities, data analytics, to predictive maintenance. EMS software comes in to continuously monitor the equipment and wiring through the sensors. This enables you to prevent issues like overloads, and ensure that a balanced load is maintained on the line. The EMS goes a step further by enabling you to undertake predictive maintenance, for the timely repair of the equipment on the power grid, minimising accidents, preventing blackouts, and averting the costly down times.

Electricity utilities connecting their power plants and grids to available IoT solution networks get to be more transparent to their consumers, by showing them where the energy they use comes from. This empowers the consumers with the information needed to select the cleanest energy source during that period, which is particularly beneficial for those keen on adopting greener practices. For instance, you can have a system monitoring a network of grids, and dynamically shifting to power sources that have the least amount of emissions at the moment ? what’s gaining popularity as “automated emission reduction”. These lead to utility firms that produce clean energy getting more consumers and growing their revenue base.

Field And Energy Management: How FieldElite and ecoVaro Work Together Through IoT

So, on one hand, you have the energy managers following up on the consumption trends at their facilities, keeping an eye on their equipment.? On the other hand, you have field workers needed to carry out repair and maintenance works at different locations.? How do you join them together to ensure a seamless flow of operations?? The IoT.

This can be seen with ecoVaro and Field Elite interaction. Here, you have two independent systems that are interlinked through the internet and secure cloud systems, bringing more convenience on board for the users.

Picture this: Loggers collecting data from the meters and sensors on-site detect an anomaly, which you will immediately be able to view through the ecoVaro platform. This can be a myriad of issues, from plumbing to electrical systems that need to be worked on, and they are at multiple locations. How do you get them resolved? Dispatch your technicians through FieldElite.

Here’s a snapshot of how this works:

FieldElite and Ecovaro Working Together

This way, you get to optimise your operations and cut down on coasts ? taking advantage of the data analytics tools brought to you by ecoVaro, and streamlining your workflow through FieldElite. IoT powered workforce and energy management systems thus become key in reducing operational expenses, scheduling repairs and maintenance, and planning for peak hours

Accessing real-time data has the welcome benefit of cutting down on the hours spent on energy management processes. Jobs like meter reading that would have taken lots of time are handled by the system. When it comes to field management, operational efficiency is increased by taking away the manual processes involved with all the paperwork.? The sensors monitored via ecoVaro alert the field service manager about equipment that needs to be checked, and FieldElite shows the field manager issues that are on queue to be resolved. In both cases, you get accurate data that will inform the decisions made ? from the maintenance measures required, to scheduling the jobs for the technicians to handle them. It’s a win-win situation.?

Building Blocks For A Brighter Tomorrow

What’s more, this sets you up for the future. Adopting IoT solutions for your field and energy management operations will score you higher ROIs going forward. The global community is working towards enhancing the efficiency of its operations and putting in place sustainable practices in line with their Social Corporate Responsibility (CSR). This is from service providers like plumbing and electrical repair businesses, to utility firms and power generation plants. Lighting systems, homes, office buildings, factories, communities, transportation and whole cites are getting connected through the internet and more control done via smart devices. This is further accelerated by cloud systems enabling real-time, reliable and secure access to the information. By incorporating these setups into your business structure, you will gain a competitive advantage in your niche. After all, we’re still in the early stages of IoT across the industries.

Transformation to a process based organisation

Today’s global marketplace rewards nimble organisations that learn and reinvent themselves faster than their competition. Employees at all levels of these organisations see themselves as members of teams responsible for specific business processes, with performance measures tied to the success of the enterprise. As team members, they are “owners” of the process (or processes) to which they are assigned. They are responsible for both the day to day functioning of their process(s), and also for continuously seeking sustainable process improvements.

Transforming a traditionally designed “top down control” enterprise to a process-based organisation built around empowered teams actively engaged in business process re-engineering (BPR) has proven more difficult than many corporate leaders have expected. Poorly planned transformation efforts have resulted in both serious impacts to the bottom line, and even more serious damage to the organisation’s fabric of trust and confidence in leadership.

Tomislav Hernaus, in a publication titled “Generic Process Transformation Model: Transition to Process-based Organisation” has presented an overview of existing approaches to organisational transformation. From the sources reviewed, Heraus has synthesised a set of steps that collectively represent a framework for planning a successful organisational change effort. Key elements identified by Hernaus include:

Strategic Analysis:

The essential first step in any transformation effort must be development of a clear and practical vision of a future organisation that will be able to profitably compete under anticipated market conditions. That vision must be expected to flex and adjust as understanding of future market conditions change, but it must always be stated in terms that all organisational members can understand.

Identifying Core Business Processes:

With the strategic vision for the organisation in mind, the next step is to define the core business processes necessary for the future organisation to function. These processes may exist across the legacy organisation’s organisational structures.

Designing around Core Processes:

The next step is development of a schematic representation of the “end state” company, organised around the Core Business Processes defined in the previous step.

Transitional Organisational Forms/ Developing Support Systems:

In his transformation model, Hernaus recognises that information management systems designed for the legacy organisation may not be able to meet the needs of the process management teams in the new organisation. Interim management structures (that can function with currently available IT system outputs) may be required to allow IT professionals time to redesign the organisation’s information management system to be flexible enough to meet changing team needs.

Creating Awareness, Understanding, and Acceptance of the Process-based Organisation:

Starting immediately after the completion of the Strategic Analysis process described above, management must devote sufficient resources to assure that all organisation members, especially key managers, have a full understanding of how a process-based organisation functions. In addition, data based process management skills need to be provided to future process team members. It is not enough to schedule communication and training activities, and check them off the list as they are completed. It is critical that management set behavioural criteria for communication and training efforts that allow objective evaluation of the results of these efforts. Management must commit to continuing essential communication and training efforts until success criteria are achieved. During this effort, it may be determined that some members of the organisation are unlikely to ever accept the new roles they will be required to assume in a process-based organization. Replacement of these individuals should be seen as both an organisational necessity and a kindness to the employees affected.

Implementation of Process Teams:

After the completion of required training AND the completion of required IT system changes, process teams can be formally rolled out in a planned sequence. Providing new teams with part time support by qualified facilitators during the firsts weeks after start-up can pay valuable long term dividends.

Team Skill Development and Continuous Process Improvement:

Providing resources for on-going skill development and for providing timely and meaningful recognition of process team successes are two keys for success in a process-based organisation. Qualified individuals with responsibility for providing training and recognition must be clearly identified and provided with sufficient budgetary resources.

The Hernaus model for transformation to a process based organisation is both well thought out and clear. His paper provides an ample resource of references for further study.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?