The Matrix Management Structure

Organizations exploit matrix management in various ways. A company, for instance, that operates globally uses it at larger scale by giving consistent products to various countries internationally. A business entity, having many products, does not assign its people to each product full-time but assign those to different ones on a part time basis, instead. And when it comes to delivering high quality and low cost products, companies overcome industry pressures with the help of many overseeing managers. In a rapidly changing environment, organizations respond quickly by sharing information through a matrix model.

Understanding the Matrix Management Structure

A basic understanding of matrix management starts with the three key roles and responsibilities that applies in the structure.

  • Matrix Leader ? The common person above all the matrix bosses is the matrix leader. He ensures that the balance of power is maintained in the entire organization by delegating decisions and promoting collaboration among the people.
  • Matrix Managers ? The managers cooperate with each other by defining the respective activities that they are responsible for.
  • Matrix Employees – The employees have lesser direct authority but has more responsibilities. They resolve differing demands from more than one matrix managers while they work things out upwards. Their loyalty must be dual and their relationships with managers must be maintained.

Characteristics of a Matrix Structure

Here are some features that define the matrix management structure:

  • Hybrid Structure ?The matrix structure is a mix of functional and project organization. Since it is a combination of these two, matrix management is hybrid in nature.
  • Functional Manager ? When it comes to the technical phases of the project, the functional manager assumes responsibility. The manager decides on how to get the project done, delegates the tasks to the subordinates and oversees the operational parts of the organization.
  • Project Manager ? The project manager has full authority in the administrative phases, including the physical and financial resources needed to complete the project. The responsibilities of a project manager comprise deciding on what to do, scheduling the work, coordinating the activities to diverse functions and evaluating over-all project performance.
  • Specialization ?As the functional managers concentrate on the technical factors, the project managers focus on administrative ones. Thus, in matrix management, there is specialization.
  • Challenge in Unity of Command ? Companies that employs matrix management usually experience a problem when it comes to the unity of command. This is largely due to the conflicting orders from the functional and project managers.

Types of Matrix Structure

The matrix management structure can be classified according to the level of power of the project manager. Here are three distinct types of matrix structures that are widely used by organizations.

  • Weak Matrix ? The project manager has limited authority and power as the functional manager controls the budget of the project. His role is only part-time and more like a coordinator.
  • Strong Matrix ? Here, the project manager has almost all the authority and power. He controls the budget, holds the full time administrative project management and has a full time role.
  • Balanced Matrix ? In this structure type, both the project and functional managers control the budget of the project. The authority and power is shared by the two as well. Although the project manager has a full time role, he only has a part time authority for the administrative staff to report under his leadership.

Successful companies of today venture more on enhancing the abilities, skills, behavior and performances of their managers than the pursuit of finding the best physical structure. Indeed, learning the fundamentals of the matrix structure is essential to maximize its efficiency. A senior executive pointed out that one of the challenges in matrix management is not more of building a structure but in creating the matrix to the mind of the managers. This comes to say that matrix management is not just about the structure, it is a frame in the mind.

Check our similar posts

Web Analytics

There’s a vast ocean of raw customer data on the Web. Ever thought of the implications if somehow you could harness all that data and transform it into useful information? Information that perhaps you can use in your SEO (Search Engine Optimisation) and conversion optimisation?

There are web analytics tools you can employ for these purposes. But using web analytics tools will only win you half the battle. You’ll have to be proficient in configuring these tools to generate insightful and actionable results out of them. A poorly configured tool can produce confusing or even misleading information.

Our web analysts possess the expertise to configure and use web analytics tools, as well as analyse results and leverage information obtained from them.

These are the things we can do to help you take advantage of web analytics.

  • Discuss with your managers to establish your specific goals, to determine what specific data we have to collect/analyse and to plan out how to go about with the entire process.
  • Help you select an appropriate tool, install it and set optimal configurations including page tags, filters, funnels, reports and others.
  • Wield the full force of your analytics tool(s) to make sound business decisions.
  • Monitor the entire web analytics system and implement adjustments when needed.
Eck Industries Sheds Fresh Light

William Eck began his business in 1948 in a 650m2 garage building. The aluminium foundry prospered, and now has an 18,500m2 factory in Manitowoc, Wisconsin employing 250 people casting a variety of casings. Like high-tech industries around the globe it needs effective illumination. After it measured its carbon footprint, it realised it needed energy efficient lighting too.

When Eck Industries began its review it had around 360 high-pressure sodium lights throughout the plant. Their operating cost was substantial. After taking independent advice from an independent agency they realised they needed to replace these with more energy-efficient fluorescent lights that consume half as much energy.

The feasibility team conducted performance tests to determine the optimum solution. After selecting enclosed, gasketed and waterproof T8 fluorescents (available in G13 bipin, single pin and recessed double contacts) they collaborated with the supplier to calculate the best combination of 4 and 6 bulb fixtures.

The fittings they chose cost $60,000 plus $10,000 installation. However a $33,000 energy rebate wrote down 47% of this immediately. They achieved further energy savings by attaching motion sensors to lights over low-traffic walkways.

The retrofit was a huge success, with an 8 month payback via a direct operating saving of $55,000 a year. Over and above enhanced illumination Eck Industries slashed 674,000 kilowatt hours off its annual lighting bill. During the 20 year design life, this equates to a total 13.5 million kilowatt hours. Other quantifiable benefits include 443 tons less carbon, 2 tons less sulphur dioxide, and 1 ton less nitrogen oxide per year.

Many companies face similar opportunities but fail to capitalise on them for a number of reasons. These may include not being aware of what is available, lacking technical insight, being short of working capital and simply being too busy to focus on them.

Eck Industries got several things right. Firstly, they consulted an independent specialist; secondly they trusted their supplier to provide honest advice, and thirdly they accepted that any significant saving is worth chasing down. Other spin-offs were safer, more attractive working conditions and an opportunity to take their foot off the carbon pedal. This is an excellent example of what is possible when you try.

If you have measured your illumination cost and are concerned about it (but are unsure what the metric means within the bigger picture) then Ecovaro offers online reports comparing it with your industry average, and highlights the cost-benefits of alternative lighting. 

Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Ready to work with Denizon?