The Future is Smarter with a Smart Meter

Traditionally, electricity and water meter consumption was measured via analogue meters. Utility billing was based on actual consumption units obtained from the meter by meter readers. This entailed physical visits to the metering point. Lots of challenges came with meter reading; talk of customers feeling their privacy is intruded, meter readers encountering hostile customers, dogs, closed gates. The result was estimated bills that were most often than not very high.

Smart meters can be dubbed as the ?next generation? type of meters. Smart meters send wireless electronic meter readings to one?s energy supplier automatically. There are both gas smart meters and electricity smart meters. Smart meters come with in-home displays, which give someone real-time feedback on their energy usage and the associated cost.

Smart meters communicate meter readings directly to utility companies therefore no one has to come to your home to read your meter; and neither are you required to submit meter readings yourself. This not only reduces costs, but leads to more accurate electricity bills practically eliminating estimated bills. Smart meters signal the end of estimated bills, and the end of overpaying or underpaying for energy.

Whereas a smart meter in itself does not save you money, the add-ons (in-home displays) that come with the smart meters and which give someone real-time feedback on their energy usage helps them to reduce the unnecessary energy use and this ultimately leads to better oversight into how to lower utility bills hence better management of one?s energy use.

In summary, a smart meter is a technology that enables energy consumers to see their energy as they use it, a technology where energy is displayed as it is being used and wireless ratings sent. Adoption of smart meters would mean the end of estimated energy bills.

Smart meters are also promising a smart future where all energy consuming devices can be connected to the internet and centrally controlled using computers or smartphones. This means one is able to switch off lights and other energy consuming devices from a central point, hence make savings and this will enable them to have greater control of their energy use, hence more comfort, convenience and life will be cheaper for all. This is the smarter future we are all looking forward to.

Check our similar posts

Energy efficiency- succeed and benefit

Energy is neither created nor destroyed; it is only transformed. This being the law of conservation of energy, and given that the process of transforming energy is inefficient resulting in loss of usable energy in the process of transforming one form of energy into another form, Energy Efficiency finds a home.
Talking of Energy efficiency, think of how much useful energy can be obtained from a system or a particular technology. It is also about the use of technology that requires a lesser amount of energy to carry out the same task.

Energy efficiency is the responsibility of both demand side and supply side. Supply-side energy efficiency refers to a set of actions taken to ensure efficiency through the electricity supply chain. Supply side efficiency measures are about efficiency in electricity generation; be it operation and maintenance of existing equipment or upgrading existing equipment with state-of-the-art energy-efficient generating equipment.

The demand side energy efficiency on the other hand refers to the actions taken to use less/demand less energy. Think of less energy usage in relation to improvement of energy efficiency in buildings, solar water heaters, energy efficient lighting systems such as Compact Fluorescent Lamps, conducting energy audits to identify potential energy saving opportunities, efficient water heating systems and the list is endless.

Success of energy efficiency is a win ? win to YOU-ME-US – the energy consumers, to THEM the energy producers and suppliers and to our precious ENVIRONMENT.
Gain to energy suppliers: – Less energy usage and better energy usage patterns among consumers consequently reduces the customer load which reduces losses on the supply side. Less energy loss creates capacity on the system to serve more customers.

Gain to you-me-us: – Less energy usage and better energy usage patterns Benefits the customer through reduced Electricity bills / $ savings through lower bills.

Benefits to the environment: – Usage of less energy reduces use of fossil fuels, hence reduction in GHG emissions hence conserving our environment. Companies look at means to make rational use of their least efficient generating equipment. The objective is to improve the operation and maintenance of existing equipment or upgrade it with state-of-the-art energy-efficient technologies. Some companies have on-site electricity generation alternatives and thus tend to consider the supply side in addition to demand-side energy efficiency.

How Ventura Bus Lines cleaned up its Act

Melbourne?s Ventura Bus Lines grew from a single bus in 1924 to a mega 308-vehicle fleet by the start of 2014. The family-owned provider has always been community centric; when climate-change became an issue it took quick and urgent action. As a result it now stands head and shoulders above many others. Let’s take a closer look at some of its decisions that made the difference.

The Important Things to Focus On

Ethanol Buses ? Ventura is the only Australian company that uses ethanol power produced from sugar cane for experimental public transport. It compares emissions within its fleet, and knows that these produce significantly less CO2 while also creating jobs for locals.

Electric Buses ? The company has been operating electric buses since 2009. These carry 42 seated among a total 68 passengers. The ride is smooth thanks to twin battery banks kept charged by braking and forward momentum. When required, a two-litre VW engine kicks in automatically.

Ongoing Driver Training ? Ventura provides regular retraining sessions emphasising safe, environmentally-friending operations. Drivers are able to see their fuel consumption and carbon emissions online and experiment with ways to improve these.

Bus U-Turns ? The capacity to measure throughput convinced the company to abandon the principle that buses don’t do U-Turns for safety?s sake. Road re-engineering made this possible in a busy downtown street. This reduced emissions equivalent to 4,000 cars and reduced vehicle downtime for servicing.

Increased Business – These initiatives allowed Ventura Bus Lines to improve its service as customers experience it. This led to an uptake in patronage and a corresponding downturn in the number of passenger car hours. The pleasure of travelling green no doubt contributed to this.

How Measuring Made the Difference

Ventura Bus Lines is big business. Its 308 buses operate out of 5 depots, cover 31% of the metropole, and transport close to 70,000 passengers on average daily which is no minor task. The ability to track, measure and analyse carbon emissions throughout the area has earned it compliance with National Greenhouse Energy Reporting Threshold 1 legislation.

It also uses the data to re-engineer bus routes to further reduce fuel consumption, energy consumption and operating costs. It’s amazing how measuring is affecting its bottom line, and the health of the Melbourne community at large.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Saving Energy Step 2 ? More Practical Ideas

In my previous blog, we wrote about implementing a management system. This boils down to sharing a common vision up and down and across the organisation, measuring progress, and pinning accountability on individuals. This time, we would like to talk about simple things that organisations can do to shrink their carbon footprints. But first let’s talk about the things that hold us back.

When we take on new clients we sometimes find that they are baffled by what I call energy industry-speak. We blame this partly on government. We understand they need clear definitions in their regulations. It’s just a pity they don’t use ordinary English when they put their ideas across in public forums.

Consultants sometimes seem to take advantage of these terms, when they roll words like audit, assessment, diagnostic, examination, survey and review across their pages. Dare we suggest they are trying to confuse with jargon? We created ecoVaro to demystify the energy business. Our goal is to convert data into formats business people understand. As promised, here are five easy things your staff could do without even going off on training.

  1. Right-size equipment? outsource peak production in busy periods, rather than wasting energy on a system that is running at half capacity mostly.
  2. Re-Install equipment to OEM specifications ? individual pieces of equipment need accurate interfacing with larger systems, to ensure that every ounce of energy delivers on its promise.
  3. Maintain to specification ? make sure machine tools are within limits, and that equipment is well-lubricated, optimally adjusted and running smoothly.
  4. Adjust HVAC to demand ? Engineers design heating and ventilation systems to cope with maximum requirements, and not all are set up to adapt to quieter periods. Try turning off a few units and see what happens.
  5. Recover Heat ? Heat around machines is energy wasted. Find creative ways to recycle it. If you can’t, then insulate the equipment from the rest of the work space, and spend less money cooling the place down.

Well that wasn’t rocket science, was it? There are many more things that we can do to streamline energy use, and coax our profits up. This is as true in a factory as in the office and at home. The power we use is largely non-renewable. Small savings help, and banknotes pile up quickly.

Ready to work with Denizon?