The Future is Smarter with a Smart Meter

Traditionally, electricity and water meter consumption was measured via analogue meters. Utility billing was based on actual consumption units obtained from the meter by meter readers. This entailed physical visits to the metering point. Lots of challenges came with meter reading; talk of customers feeling their privacy is intruded, meter readers encountering hostile customers, dogs, closed gates. The result was estimated bills that were most often than not very high.

Smart meters can be dubbed as the ?next generation? type of meters. Smart meters send wireless electronic meter readings to one?s energy supplier automatically. There are both gas smart meters and electricity smart meters. Smart meters come with in-home displays, which give someone real-time feedback on their energy usage and the associated cost.

Smart meters communicate meter readings directly to utility companies therefore no one has to come to your home to read your meter; and neither are you required to submit meter readings yourself. This not only reduces costs, but leads to more accurate electricity bills practically eliminating estimated bills. Smart meters signal the end of estimated bills, and the end of overpaying or underpaying for energy.

Whereas a smart meter in itself does not save you money, the add-ons (in-home displays) that come with the smart meters and which give someone real-time feedback on their energy usage helps them to reduce the unnecessary energy use and this ultimately leads to better oversight into how to lower utility bills hence better management of one?s energy use.

In summary, a smart meter is a technology that enables energy consumers to see their energy as they use it, a technology where energy is displayed as it is being used and wireless ratings sent. Adoption of smart meters would mean the end of estimated energy bills.

Smart meters are also promising a smart future where all energy consuming devices can be connected to the internet and centrally controlled using computers or smartphones. This means one is able to switch off lights and other energy consuming devices from a central point, hence make savings and this will enable them to have greater control of their energy use, hence more comfort, convenience and life will be cheaper for all. This is the smarter future we are all looking forward to.

Check our similar posts

Scrumming Down to Complete Projects

Everybody knows about rugby union scrums. For our purposes, perhaps it is best to view them as mini projects where the goal is to get the ball back to the fly-half no matter what the opposition does. Some scrums are set pieces where players follow planned manoeuvres. Loose / rolling scrums develop on the fly where the team responds as best according to the situation. If that sounds to you like software project management then read on, because there are more similarities?.

Isn’t Scrum Project Management the Same as Agile?

No it’s not, because Scrum is disinterested in customer liaison or project planning, although the team members may be happy to receive the accolades following success. In the same way that rugby players let somebody else decide the rules and arrange the fixtures, a software Scrum team just wants the action.

Scrum does however align closely ? dare I say interchangeably with Agile?s sprints. Stripping it of all the other stages frees the observer up to analyse it more closely in the context of a rough and tumble project, where every morning can begin with a backlog of revised requirements to back fit.

The 3 Main Phases of a Scrum

A Scrum is a single day in the life of a project, building onto what went before and setting the stage for what will happen the following day. The desired output is a block of component software that can be tested separately and inserted later. Scrumming is also a useful technique for managing any project that can be broken into discreet phases. The construction industry is a good example.

Phase 1 – Define the Backlog. A Scrum Team?s day begins with a 15 minute planning meeting where team members agree individual to-do lists called ?backlogs?.

Phase 2 – Sprint Towards the Goal. The team separates to allow each member to complete their individual lines of code. Little or no discussion is needed as this stage.

Phase 3 – Review Meeting. At the end of each working day, the team reconvenes to walk down what has been achieved, and check the interconnected functionality.

The 3 Main Phases of a Scrum ? Conclusions and Thoughts

Scrum is a great way to liberate a competent project team from unnecessary constraints that liberate creativity. The question you need to ask yourself as manager is, are you comfortable enough to watch proceedings from the side lines without rushing onto the field to grab the ball.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Energy Management Software Benefits Your Business

We’re in an era of price volatility in gas and electricity prices, coupled with greater scrutiny on the environmental impact of businesses in their day-to-day operations. According to the Department of Energy & Climate Change, the average SME can slash its energy bill by 18-25% simply by installing energy efficiency solutions in their facility. 

Are you looking to improve energy use in your business? Prevent wastage, track consumption, identify opportunities to save on energy and reduce your carbon footprint while at it? It can be a daunting process to do it all manually. Taking those meter readings, preparing spreadsheets and combing through quotes and energy bills to validate them – this is not something you should be enduring in this day and age. Not when there are dedicated systems built for the task. That’s where Energy Management Software (EMS) comes in. 

Importance Of Energy Management Software

Wasted energy = Wasted money

Failing to improve energy efficiency is costing SMEs loads of funds, with it coming to between £5,801 and £12,109 of missed annual savings for individual businesses. These are 18% – 24% of their energy costs. Where do you stand?

Take timers and thermostats for instance. When not properly set and controlled, or even simply forgetting to turn them down when not in the room, it can easily lead to unnecessary costs. How often do your staff forget to turn off the air conditioning when they leave the meeting rooms? Do you account for weekends or bank holidays when setting the controls of the AC? Mistakes like turning the temperature high on the thermostat to “quickly warm the room” are common, yet heating costs go up by about 8% with every 1°C rise.

There are installations that you can make to minimize wastage. For example, the Chinese Contemporary Arts Centre in Manchester is able to save £4,363 annually just by having a £100 timer installed to its heating system. 

Some energy saving measures won’t even cost you a penny. For instance, did you know that you can save up to 30% of your heating costs simply by preventing cold air from entering the building? This means not keeping the doors just open for convenience. So how can you find points of weakness and areas of improvements in your facility? Install an EMS. 

While businesses vary from one industry to the next, energy management basically boils down to:

  • Metering systems where the consumption is recorded
  • Determining how much energy can be saved by identifying opportunities for this
  • Implementing policies and changing existing systems to take advantage of these opportunities
  • Tracking progress after the improvements have been made

 

Benefits Of EMS For Your Business

Data Acquisition – Where accuracy and reliability matters

Energy data comes from different angles and formats. From the building automation systems and IoT devices that have been set up, bills sent in by the utility company to the spreadsheets needed to analyse them – what if you had it all from one point of reference? The EMS gives you a “bird’s eye view” of all your energy data from one interface. It collects the data from any system – and being cloud-based, is accessible from anywhere in the world. 

The ecoVaro data loggers can be connected with the Wi-Fi network of the facility or function independently, depending on your specific requirements. They monitor readings 24/7, retaining the data even when they have been powered off. The end-to-end encryption assures you of the security of the information that is being obtained. 

Integrating the EMS into the existing systems will simplify the data collection process, and even for the cases where there isn’t a direct method transferring the data into the system, the setup wizards that come with the EMS allow you to prepare the required data and import it. 

Data Analysis: From consumption, energy leaks to areas of improvement

The first step is accurately collecting the data. The next step is making sense of it. The analysis modules with the EMS allow you to monitor the energy consumption of the facility in real-time. 

The energy data is displayed in engaging graphics that are easy to understand at a glance. The dashboard setup, with its customised layout, enables you to monitor the performance of the specific information you want, toggling through usage and savings data, to the meters and sites that are being tracked. With the ecoVaro Energy Management Software, you get Consumption Charts, Regression Charts, Cusum Charts and Heatmaps right to the submeter level. This information can be broken down into 15-minute durations, with the daily, weekly and monthly consumption reports. 

Getting everyone on board

Making changes to company-wide energy policies needs to have the different parties on board – from the energy manager in charge of crunching the numbers and presenting the information, the CFO of the business, the staff running day-to-day operations, all through to plant operators for those in industries. An easy mode of communication is needed, that will be understood and availed in reports that can be shared with the relevant parties in the organization. The graphical displays that come with the EMS enable actionable information to be displayed in a simplified manner – that way all members of the business or organization will be able to comprehend it. 

Meet your Energy Goals

The baseline that is created in the EMS is used as a standard when assessing the impact of future changes to the energy consumption. Using the information that has been obtained, the management can set up energy saving policies and implement changes, and track KPIs (key performance indicators) along the way. For instance, the market research company DJS Research installed a timer switch that turns off their two water coolers when they aren’t in use. This action saves them £144 annually, and had already paid for itself within 35 days.   

You will be in a position to assess the actions that provide your business with the best ROI over time, monitoring the progress and verifying the savings from one central dashboard. Cutting costs here will enable you to divert the funds to other areas of your business, including promotions, marketing, and product development.

For businesses in the energy sector- including electric, oil and gas plants, they specifically need carbon emission reports, to pinpoint areas where the building’s energy efficiency can be improved. ecoVaro EMS allows you to set alarms and KPIs in the facility for issues to be identified and resolved immediately they crop up. 

Turn to ecoVaro

EMS systems are used across the board – from optimising energy use in hotel rooms and hospitals, mapping out usage patterns for those in the agriculture and supply chain niches, running facilities for utility providers, all through to increasing the efficiency of equipment operation for business in the food and beverage sector. Want to learn how you can cut down your energy bills and make your business more eco-friendly? EcoVaro’s team is ready to get you started.

Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?