The Future is Smarter with a Smart Meter

Traditionally, electricity and water meter consumption was measured via analogue meters. Utility billing was based on actual consumption units obtained from the meter by meter readers. This entailed physical visits to the metering point. Lots of challenges came with meter reading; talk of customers feeling their privacy is intruded, meter readers encountering hostile customers, dogs, closed gates. The result was estimated bills that were most often than not very high.

Smart meters can be dubbed as the ?next generation? type of meters. Smart meters send wireless electronic meter readings to one?s energy supplier automatically. There are both gas smart meters and electricity smart meters. Smart meters come with in-home displays, which give someone real-time feedback on their energy usage and the associated cost.

Smart meters communicate meter readings directly to utility companies therefore no one has to come to your home to read your meter; and neither are you required to submit meter readings yourself. This not only reduces costs, but leads to more accurate electricity bills practically eliminating estimated bills. Smart meters signal the end of estimated bills, and the end of overpaying or underpaying for energy.

Whereas a smart meter in itself does not save you money, the add-ons (in-home displays) that come with the smart meters and which give someone real-time feedback on their energy usage helps them to reduce the unnecessary energy use and this ultimately leads to better oversight into how to lower utility bills hence better management of one?s energy use.

In summary, a smart meter is a technology that enables energy consumers to see their energy as they use it, a technology where energy is displayed as it is being used and wireless ratings sent. Adoption of smart meters would mean the end of estimated energy bills.

Smart meters are also promising a smart future where all energy consuming devices can be connected to the internet and centrally controlled using computers or smartphones. This means one is able to switch off lights and other energy consuming devices from a central point, hence make savings and this will enable them to have greater control of their energy use, hence more comfort, convenience and life will be cheaper for all. This is the smarter future we are all looking forward to.

Check our similar posts

Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

Big Energy Data Management

Recent times have seen the advent of cloud based services and solutions where energy data is being stored in the cloud and being accessed from anywhere, anytime through remote mobile devices. This has been made possible by web-based systems that can usually bring real-time meter-data into clear view allowing for proactive business and facility management decisions. Some web based systems may even support multi utility metering points and come in handy for businesses operating multiple sites.

Whereas all this has been made possible by increased use of smart devices/ intelligent energy devices that capture data at more regular intervals; the challenge facing businesses is how to transform the large data/big volume of data into insights and action plans that would translate into increased performance in terms of increased energy efficiency or power reliability.

A solution to this dilemma facing businesses that do not know how to process big energy data, may lie in energy management software. Energy management software?s have the capability to analyse energy consumption for, electricity, gas, water, heat, renewables and oil. They enable users to track consumption for different sources so that consumers are able to identify areas of inefficiency and where they can reduce energy consumption, Energy software also helps in analytics and reporting. The analytics and reporting features that come with energy software are usually able to:

? Generate charts and graphs ? some software?s give you an option to select from different graphs

? Do graphical comparisons e.g. generate graphs of the seasonal average for the same season and day type

? Generate reports that are highly customisable

While choosing from the wide range of software available, it is important for businesses to consider software that has the capacity to support their data volume, software that can support the frequency with which their data is captured and support the data accuracy or reliability.

Energy software alone may not make the magic happen. Businesses may need to invest in trained human resources in order to realise the best value from their big energy data. Experts in energy management would then apply human expertise to leverage the data and analyse it with proficiency to make it meaningful to one?s business.

Scrumming Down to Complete Projects

Everybody knows about rugby union scrums. For our purposes, perhaps it is best to view them as mini projects where the goal is to get the ball back to the fly-half no matter what the opposition does. Some scrums are set pieces where players follow planned manoeuvres. Loose / rolling scrums develop on the fly where the team responds as best according to the situation. If that sounds to you like software project management then read on, because there are more similarities?.

Isn’t Scrum Project Management the Same as Agile?

No it’s not, because Scrum is disinterested in customer liaison or project planning, although the team members may be happy to receive the accolades following success. In the same way that rugby players let somebody else decide the rules and arrange the fixtures, a software Scrum team just wants the action.

Scrum does however align closely ? dare I say interchangeably with Agile?s sprints. Stripping it of all the other stages frees the observer up to analyse it more closely in the context of a rough and tumble project, where every morning can begin with a backlog of revised requirements to back fit.

The 3 Main Phases of a Scrum

A Scrum is a single day in the life of a project, building onto what went before and setting the stage for what will happen the following day. The desired output is a block of component software that can be tested separately and inserted later. Scrumming is also a useful technique for managing any project that can be broken into discreet phases. The construction industry is a good example.

Phase 1 – Define the Backlog. A Scrum Team?s day begins with a 15 minute planning meeting where team members agree individual to-do lists called ?backlogs?.

Phase 2 – Sprint Towards the Goal. The team separates to allow each member to complete their individual lines of code. Little or no discussion is needed as this stage.

Phase 3 – Review Meeting. At the end of each working day, the team reconvenes to walk down what has been achieved, and check the interconnected functionality.

The 3 Main Phases of a Scrum ? Conclusions and Thoughts

Scrum is a great way to liberate a competent project team from unnecessary constraints that liberate creativity. The question you need to ask yourself as manager is, are you comfortable enough to watch proceedings from the side lines without rushing onto the field to grab the ball.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?