Succeed at Transformation

Despite the pomp and fanfare associated with launching corporate transformation programs, in reality very few of them succeed. According to a recent report by McKinsey the success rate is pegged below 40%. In addition, the same research indicates that defensive transformations – those undertaken as part of crisis management – have lower chances of success than progressive ones – those launched to streamline operations and foster growth. However, adopting certain strategies, like setting clear and high goals, and maintaining energy and engagement throughout the implementation phase, can really boost the project’s success rate. A key aspect of business transformation is IT transformation. This can be attributed to the fact that significant business change is either driven or influenced by technological change.

So what is IT Transformation?

IT transformation is basically a holistic reorganisation of the existing technological infrastructure that supports the company’s mission critical functions. In essence, IT transformation is not all about effecting change for the sake of change but involves systematic steps that align IT systems to business functions. To appreciate this approach, it is important to explore current trends in the business world where human resource, finance and IT transformations are being carried out in unison. This is being done to develop strong corporate centres that are leaner, agile and more productive that enhance greater synergies across all business functions.

IT transformation inevitably results in major changes of the information system’s technology, involving both hardware and software components of the system, the architecture of the system, the manner in which data is structured or accessed, IT control and command governance, and the components supporting the system. From this scope of works it is evident that IT transformation is a huge project that requires proper planning and implementation in order to succeed.

Tips to Improve Success in IT transformations Projects

1. Focus on Benefits not Functionality

The project plan should be more focused on benefits that can be accrued if the system is implemented successfully rather than system functionality. The benefits should be in line with business goals, for instance cost reduction and value addition. The emphasis should be on the envisaged benefits which are defined and outlined during the project authorisation. The business benefits outlined should be clear, feasible, compelling and quantifiable. Measures should be put in place to ensure that the benefits are clearly linked to the new system functionality.

2. Adopt a Multiple Release Approach

Typically most IT projects are planned with focus on a big launch date set in years to come. This approach is highly favoured because it simplifies stakeholder expectation management and avoids the complexity associated with multiple incremental releases. However, this approach misses the benefit of getting early critical feedback on functioning of the system. In addition, the long lead times often result in changes in project scope and loss of critical team members and stakeholders. IT transformation projects should be planned to deliver discrete portions of functionality in several releases. The benefit of multiple release approach is that it reduces project risks and most importantly allows earlier lessons learnt to be incorporated in future releases.

3. Capacity of the Organisation to confront Change

As pointed out, IT transformations result in significant changes in business operations and functions. Hence it is important that all business stakeholders should be reading from the same script in regards to changes expected. In addition, key stakeholders should be involved in crucial project stages and their feedback incorporated to ensure that the system is not only functional but business focused.

Check our similar posts

What Kanban can do for Call Centre Response Times

When a Toyota industrial engineer named Taiichi Ohno was investigating ways to optimise production material stocks in 1953, it struck him that supermarkets already had the key. Their customers purchased food and groceries on a just-in-time basis, because they trusted continuity of supply. This enabled stores to predict demand, and ensure their suppliers kept the shelves full.

The Kanban system that Taiichi Ohno implemented included a labelling system. His Kanban tickets recorded details of the factory order, the delivery destination, and the process intended for the materials. Since then, Ohno?s system has helped in many other applications, especially where customer demand may be unpredictable.

Optimising Workflow in Call Centres
Optimising workflow in call centres involves aiming to have an agent pick up an incoming call within a few rings and deal with it effectively. Were this to be the case we would truly have a just-in-time business, in which operators arrived and left their stations according to customer demand. For this to be possible, we would need to standardise performance across the call centre team. Moving optimistically in that direction we would should do these three things:

  • Make our call centre operation nimble
  • Reduce the average time to handle calls
  • Decide an average time to answer callers

When we have done that, we are in a position to apply these norms to fluctuating call frequencies, and introduce ?kanbanned? call centre operators.

Making Call Centre Operations Nimble
The best place to start is to ask the operators and support staff what they think. Back in the 1960?s Robert Townsend of Avis Cars famously said, ?ask the people ? they know where the wheels are squeaking? and that is as true as ever.

  1. Begin by asking technical support about downtime frequencies, duration, and causes. Given the cost of labour and frustrated callers, we should have the fastest and most reliable telecoms and computer equipment we can find.
  1. Then invest in training and retraining operators, and making sure the pop-up screens are valuable, valid, and useful. They cannot do their job without this information, and it must be at least as tech-savvy as their average callers are.
  1. Finally, spruce up the call centre with more than a lick of paint to awaken a sense of enthusiasm and pride. Find time for occasional team builds and fun during breaks. Tele-operators have a difficult job. Make theirs fun!

Reducing Average Time to Handle Calls
Average length of contact is probably our most important metric. We should beware of shortening this at the cost of quality of interaction. To calculate it, use this formula:

Total Work Time + Total Hold Time + Total Post Call Time

Divided By

Total Calls Handled in that Period

Share recordings of great calls that highlight how your best operators work. Encourage role-play during training sessions so people learn by doing. Publish your average call-handling time statistics. Encourage individual operators to track how they are doing against these numbers. Make sure your customer information is up to date. While they must confirm core data, limit this so your operators can get down to their job sooner.

Decide a Target Time to Answer Calls
You should know what is possible in a matter of a few weeks. Do not attempt to go too tight on this one. It is better to build in say 10% slack that you can always trim in future. Once you have decided this, you can implement your Kanban system.

Introducing Kanban in Your Call Centre Operation
Monitor your rate of incoming calls through your contact centre, and adjust your operator-demand metric on an ongoing basis. Use this to calculate your over / under demand factor. Every operator should know the value on this Kanban ticket. It will tell them whether to speed up a little, or slow down a bit so they deliver the effort the call rate demands. It will also advise the supervisor when to call up reserves.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How AI Helps Improve Field Service

Its seems that with the current rate of technological innovation that these is something new every single day.  Therefore, you’re always looking forward to a new technological innovation that’s going to help you make your business operations more efficient and automated.

One of the most fascinating milestones in the field of technology is the integration of Artificial Intelligence (AI) in business. In one way or the other, AI gives a glimpse of machine supremacy that allows computers to perform tasks that were initially performed by humans. 

Are machines going to completely replace people in the workplace?

Of course, not.  Technologies like AI and Machine Learning are designed and meant to support employees in doing their tasks too boost their productivity.

AI is predominantly used to eliminate jobs and tasks that humans find boring, demotivating or monotonous. In some cases AI is also used to do jobs that are considered dangerous for humans to preform.

Previously the most common implementations for AI were all about gaming, entertainment, and advanced science,  now it’s spreading into a number of industries including the field service industry.

FieldElite – Field Service Software , can help you optimise the day-to-day operations of your business.

AI in field service management will enhance you business capabilities with:

  • Information Sharing
  • Real Time Updates
  • Automated Workflows
  • Digital Form Data Collection
  • Data Analysis

Improved Customer Service

For Service Based companies, customer retention is vital. Primarily because It can be 5-25 times more costly to acquire a new customer than it is to retain an existing ones.

Therefore customer retention should be a primary focus.? The good news is that by making use of AI you can implement services It can be 5-25 times more costly to acquire a new customer than it is to retain an existing one.

Staying on top of and ensuring you satisfactorily address and meet you customer demands and expectations can be a daunting task.? It can also be an expensive one,? especially for small field service based businesses like :

  • Heating & Plumbing Engineers
  • Electrical Contractors
  • Fire Safety Inspectors
  • HVAC Engineers
  • Facility Management
  • Building, Construction & Trade

Implementing Artificial Intelligence and Machine Learning to automate mundane and repetitive customer administration tasks will enable your staff to be free to provide additional value added tasks for your customers. Making your customers happier.

?Think about the active Chatbots. You can always get complaints directly from customers and address them right away.??

If at any point the customer is unhappy with your services, they can always raise the issue via the Chatbots. Since the bots contain necessary customer information, you can always get back to them and fix the issue at hand.?

With AI in field service, you can solve problems before they arise, or what is otherwise known as predictive maintenance,? In that way, you’ll have better customer relations because you’ll be able to address your customer concerns before they even become aware of them.

Improved Productivity

Scheduling tasks and managing the workforce isn’t a walk in the park. It goes beyond assigning tasks to your team members in the field and giving them deadlines to meet. Whether it’s a small firm or a big organisation, it’s quite difficult to organise the workforce.?

However, adopting Artificial Intelligence can iron out the difficulties most field organisations face in scheduling and managing tasks. Some years back, most firms relied on human intelligence to dispatch jobs to the right people based on given conditions. This was quite difficult, especially that it wasn’t always successful. But thanks to AI. With field service apps like FieldElite scheduling tasks and managing workforce is only a few clicks away.?

What’s more? There?s no room for error. Therefore, you’ll always match the right people for the job. Again, your team will always get tasks on time. That means, the job completion rate will go up, and hence the workforce becomes more productive.?

Predictive Maintenance

Usually, most business operations are based on ?solve the problem as it occurs?, which is just OK. However, it’s not always safe to wait until a problem occurs so that you solve it. Prevention is better than cure, and that’s why Artificial Intelligence comes handy in Field Service.

Using FieldElite Workforce Management Software , you don’t have to wait until something breaks.? Utilizing AI in field service enables you to proactively address field service needs and prevent unforeseen failures and interruptions.?

The ability to predict field service needs through field service apps like FieldElite enables you to make more accurate forecasts. In this way, resource planning is made easier, and as such, you’ll have smoothly running workflows. Again, by taking care of unforeseen circumstances in advance, you’re flexible enough to take care of the unexpected. And that means the overall productivity of your business will go up.

Job Management

Most field service jobs involve multiple stages that can take several days to complete. In addition to this, more often than not, you have to coordinate lots of equipment and contractors at the same time. All these can’t be achieved solely by human efforts. For more successful outcomes, it’s important to incorporate Artificial Intelligence in your field service operations.?

FieldElite is the field service solution that can help you manage sophisticated tasks. The app is packed with field service management tools that enable you to assign complicated tasks and keep track of your field techs. For long-cycle jobs, FieldElite app enables you to follow up on the activities going on the field to ensure they’re completed.?

With AI, there?s no room for error even when the jobs become more sophisticated.

Data Analysis

?

Field service industry involves lots of data. Some years back, organisations depended on human intelligence to analyse big data. Well, things still worked out, but as a human is to err, the outcome wasn’t always perfect. However, with Artificial Intelligence data analysis, 100% accuracy in data analysis is achievable. Field service solutions like FieldElite provide sophisticated data analytic tools that enable you to crack massive data and offer accurate solutions.?

FieldElite data analytics capabilities give you an insight into what’s not working and what needs to be improved. In that way, you can always address matters arising and take care of the loopholes.?

It’s time to go paperless with field management software like FieldElite if you?d like to make your business more profitable. Apart from improving the productivity of your workforce, incorporating AI in your business increases profitability. If you’re still doing your usual field rounds with a clipboard, it’s time to simplify your task with FieldElite app.?

Contact Us

Why Predictive Maintenance is More Profitable than Reactive Maintenance

Regular maintenance is needed to keep the equipment in your facility operating normally. All machinery has a design lifespan, and your goal is to extend this as long as possible, while maintaining optimal production levels. How you go about the maintenance matters, from routine checks to repairing the damaged component parts?all before the whole unit needs to be tossed away and a new one purchased and installed. Here, we will break down the different approaches used, and show you why more industries and businesses are turning to proactive maintenance modes as opposed to the traditional reactive approaches for their?field service operations.?

Reactive Maintenance: A wait and see game

Here, you basically wait for a problem to occur, then fix it. It’s also commonly referred to as a “Run-to-Failure” approach, where you operate the machines and systems until they break. Repairs are then carried out, restoring it to operational condition.?

At face value, it appears cost-effective, but the reality on the ground is far much different. Sure, when the equipment is new, you can expect minimal cases of maintenance. During this time, there?ll be money saved. However, as time progresses there?ll be increased wear, making reliance on a reactive maintenance approach a costly endeavour. The breakdowns are more frequent, and inconsistent as well. Unplanned expenses increase operational costs, and there will be lost productivity during the periods in which the affected machinery won’t be in operation.?

While reactive maintenance makes sense when you’re changing a faulty light bulb at home, things are more complicated when it comes to dealing with machinery in industries, or for those managing multiple residential and commercial properties. For the light bulb, it’s easier to replace it, and failure doesn’t have a ripple effect on the rest of the structures in the household. For industries, each time there is equipment failure, you end up with downtime, production can grind to a halt, and there will be increased environmental risks during equipment start-up and shutdown. If spare parts are not readily available, there will be logistical hurdles as you rush the shipping to get the component parts to the facility. Add this to overworked clients in a bit to complete the repair and to make up for lost hours and delayed customer orders.

For field service companies, more time ends up being spent. After all, there?s the need of knowing which parts needed to be attended to, where they are, and when the servicing is required. Even when you have a planned-out schedule, emergency repairs that are required will force you to immediately make changes. These ramps up the cots, affecting your operations and leading to higher bills for your client. These inconveniences have contributed to the increased reliance on?field service management platforms that leverage on data analytics and IoT to reduce the repair costs, optimise maintenance schedules, and?reduce unnecessary downtimes?for the clients.

Waiting for the machinery to break down actually shortens the lifespan of the unit, leading to more replacements being required. Since the machinery is expected to get damaged much sooner, you also need to have a large inventory of spare parts. What’s more, the damages that result will be likely to necessitate more extensive repairs that would have been needed if the machinery had not been run to failure.?

Pros of reactive maintenance

  1. Less staff required.
  2. Less time is spent on preparation.

Cons of reactive maintenance

  1. Increased downtime during machine failure.
  2. More overtime is taken up when conducting repairs.
  3. Increased expenses for purchasing and storing spare parts.?
  4. Frequent equipment replacement, driving up costs.?

This ?If it ain’t broke, don’t fix it? approach leads to hefty repair and replacement bills. A different maintenance strategy is required to minimise costs. Proactive models come into focus. Before we delve into predictive maintenance, let’s look at the preventive approach.?

Preventive Maintenance: Sticking to a timetable

Here, maintenance tasks are carried out on a planned routine?like how you change your vehicle?s engine oil after hitting a specific number of kilometres. These tasks are planned in intervals, based on specific triggers?like a period of time, or when certain thresholds are recorded by the meters. Lubrication, carrying out filter changes, and the like will result in the equipment operating more efficiently for a longer duration of time. While it doesn’t completely stop catastrophic failures from occurring, it does reduce the number of failures that occur. This translates to capital savings.??

The Middle Ground? Merits And Demerits Of Preventive Maintenance

This periodic checking is a step above the reactive maintenance, given that it increases the lifespan of the asset, and makes it more reliable. It also leads to a reduced downtime, thus positively affecting your company?s productivity. Usually, an 80/20 approach is adopted,?drawing from Pareto’s Principle. This means that by spending 80% of time and effort on planned and preventive maintenance, then reactive maintenance for those unexpected failures that pop up will only occur 20% of the time. Sure, it doesn’t always come to an exact 80/20 ratio, but it does help in directing the maintenance efforts of a company, and reducing the expenses that go into it.?

Note that there will need to be a significant investment?especially of time, in order to plan a preventive maintenance strategy, plus the preparation and delegation of tasks. However, the efforts are more cost effective than waiting for your systems and machinery to fail in order to conduct repairs. In fact, according to the US Dept. of Energy, a company can save between 12-18 % when using a preventive maintenance approach compared to reactive maintenance.

While it is better than the purely reactive approach, there are still drawbacks to this process. For instance, asset failure will still be likely to occur, and there will be the aspect of time and resource wastage when performing unneeded maintenance, especially when technicians have to travel to different sites out in the field. There is also the risk of incidental damage to machine components when the unneeded checks and repairs are being carried out, leading to extra costs being incurred.

We can now up the ante with predictive maintenance. Let’s look at what it has to offer:

Predictive Maintenance: See it before it happens

This builds on preventive maintenance, using data analytics to smooth the process, reduce wastage, and make it more cost effective. Here, the maintenance is conducted by relying on trends observed using data collected from the equipment in question, such as through vibration analysis, energy consumption, oil analysis and thermal imaging. This data is then taken through predictive algorithms that show trends and point out when the equipment will need maintenance. You get to see unhealthy trends like excessive vibration of the equipment, decreasing fuel efficiency, lubrication degradation, and their impact on your production capacities. Before the conditions breach the predetermined parameters of the equipment’s normal operating standards, the affected equipment is repaired or the damaged components replaced.??

Basically, maintenance is scheduled before operational or mechanical conditions demand it. Damage to equipment can be prevented by attending to the affected parts after observing a decrease in performance at the onset?instead of waiting for the damage to be extensive?which would have resulted in system failure. Using?data-driven?field service job management software will help you to automate your work and optimise schedules, informing you about possible future failures.

Sensors used record the condition of the equipment in real time. This information is then analysed, showing the current and future operational capabilities of the equipment. System degradation is detected quickly, and steps can be taken to rectify it before further deterioration occurs. This approach optimises operational efficiency. Firstly, it drastically reduces total equipment failure?coming close to eliminating it, extending the lifespan of the machinery and slashing replacement costs. You can have an orderly timetable for your maintenance sessions, and buy the equipment needed for the repairs. Speaking of which, this approach minimises inventory especially with regards to the spare parts, as you will be able to note the specific units needed beforehand and plan for them, instead of casting a wide net and stockpiling spare parts for repairs that may or may not be required. Repair tasks can be more accurately scheduled, minimising time wasted on unneeded maintenance.??

Preventive vs Predictive Maintenance?

How is predictive different from preventive maintenance? For starters, it bases the need for maintenance on the actual condition of the equipment, instead of a predetermined schedule. Take the oil-change on cars for instance. With the preventive model, the oil may be changed after every 5000?7500 km. Here, this change is necessitated because of the runtime. One doesn’t look at the performance capability and actual condition of the oil. It is simply changed because “it is now time to change it“. However, with the predictive maintenance approach, the car owner would ideally analyse the condition of the oil at regular intervals- looking at aspects like its lubrication properties. They would then determine if they can continue using the same oil, and extend the duration required before the next oil change, like by another 3000 kilometres. Perhaps due to the conditions in which the car had been driven, or environmental concerns, the oil may be required to be changed much sooner in order to protect the component parts with fresh new lubricant. In the long run, the car owner will make savings. The US Dept. of Energy report also shows that you get 8-12% more cost savings with the predictive approach compared to relying on preventive maintenance programs. Certainly, it is already far much more effective compared to the reactive model.?

Pros of Predictive Maintenance

  1. Increases the asset lifespan.
  2. Decreases equipment downtime.
  3. Decreases costs on spare parts and labour.
  4. Improves worker safety, which has the welcome benefit of increasing employee morale.
  5. Optimising the operation of the equipment used leads to energy savings.
  6. Increased plant reliability.

Cons of Predictive Maintenance

  1. Initial capital costs included in acquiring and setting up diagnostic equipment.
  2. Investment required in training the employees to effectively use the predictive maintenance technology adopted by the company.

The pros of this approach outweigh the cons.?Independent surveys on industrial average savings?after implementing a predictive maintenance program showed that firms eliminated asset breakdown by 70-75%, boosted production by 20-25%, and reduced maintenance costs by 25-30%. Its ROI was an average of 10 times, making it a worthy investment.

Ready to work with Denizon?