Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Check our similar posts

Benefits of Energy Savings Opportunity Scheme (ESOS)

More than just building energy, improving skills and undertaking audits, Energy Savings Opportunity Scheme works beyond. ESOS adheres to policy coherence, provides information to raise awareness, facilitates energy efficiency market and encourages adoption of appropriate energy efficiency measures.

Generally, ESOS is great for energy professionals and businesses. And in the current situation of UK?s energy industry, this new scheme is a substantial help. The key is to know the benefits that ESOS provides, understand how it can affect you, learn how to maximise its potential and make a big difference. Here?s to explore the highlights of ESOS.

Who benefits from ESOS?

Energy Savings Opportunity Scheme covers non-SME enterprises which includes UK businesses having more than 250 employees; even those with employees fewer than 250 but have annual turnover of more than ?50m and balance sheet exceeding ?43m; or those professionals that belong to a large enterprise. This is in accordance with what Article 8 of the EU Derivative provides.

What are the benefits of ESOS?

ESOS provides opportunities to enhance an organisation’s energy efficiency strategy, of which the benefits include:

Economic Growth and Competitiveness

The implementation of energy efficient measures increases local employment in the labour markets. Consequently, this taps the labour potential and drives economic growth.? In a lower carbon economy, businesses need to develop green projects to maintain economic competitiveness as well. ESOS is strategic approach initiated by the UK government to push technological innovation and energy investments.

Cost Savings and Emission Reductions

ESOS is flexible in such a way that it combines energy policies and innovations tailored to every organisation’s need. The energy efficiency measures taken, resulting from the scheme, quickly cuts down both carbon emissions and energy bills at cheapest possible ways.

Managing Energy Demand

ESOS provides energy security to UK by reducing the energy consumption of enterprises. With this, the economy would be more efficient and less exposed to international energy market volatility. Also, this will lead to more savings from less future investment in energy infrastructure.

Getting your Management Performance Noticed

If you are an energy professional, you will benefit from ESOS by exploiting it ?to boost your charisma towards the company directors. You can show them how the scheme works and how it can save your company substantial costs. Managing energy with ESOS can help an organisation grow. Nevertheless, you are the key person designated to get the project done and achieve success.

How can ESOS make a difference?

More than anything else, ESOS can make a huge change. True to its name, it provides large enterprises the opportunity to manage energy wisely, reduce overhead costs and promote responsible corporate energy consumption.

The International Energy Agency said that investing in energy efficiency leads to growth, additional jobs, competent budgets on public spending and enhanced industry productivity. If you are an energy and environment professional or a non-SME business entity, you hold the impulse to act. Aside from all those excellent business benefits that you get to enjoy, you will be able to contribute a portion towards achieving UK?s national carbon target of 80% in CO2 by 2050.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Making Click-and-Collect click

In my previous post, I introduced you to integrated e-commerce and explained why it is the right way to extend your business online. If you already have a brick-and-mortar retailing business and you’re looking to improve your online presence, you could start offering a click-and-collect service.

With click-and-collect, customers order online and then collect their merchandise from one of the retailer?s local branches. Why would they want to do that?

Apparently, there are buyers who now prefer a click-and-collect service over the delivery service of a purely online retailer. With the latter, they sometimes have to wait forever for the delivery van to arrive or contend with a missed-delivery card.

Basically, customers who want both the convenience of placing orders online and better control of their time find click-and-collect a better option.

Last December 2011, IMRG (Interactive Media in Retail Group) reported a ?significant rise in the percentage of click-and-collect e-retail sales in the 3rd quarter of 2011?. This accounted for 10.4% of all e-retail sales in that quarter. More specifically, the gain was 7.4%, which was also the strongest quarterly gain since IMRG started collecting this data.

Clearly, this particular service is gaining popularity. But how do you meet the rising demand in this area?

A click-and-collect service requires a highly synchronised ecosystem. You don’t want to have a customer order items from your online store, drive a couple of minutes from his house to your nearest outlet, only to find out that one of the items is no longer available.

This can only work if all systems involved are interconnected. Changes in the inventory in your individual outlets should reflect on your database in real time. In turn, these changes have to be reflected instantly on your online store. Conversely, once a buyer has picked items online and is already directed to a local outlet, those items have to be reserved there.

But that’s not all. Your system has to be seamless enough to support fast and reliable service. You don’t want your buyer to have to wait a long time before the items are ready for pick-up. It also has to be capable of tracking the status of ordered products, handling uncollected orders, and monitoring inventory.

By implementing an integrated e-commerce system, these won’t be the only things you?d be able to do. You can even add more value to your service. For example, you can connect to your CRM and learn more about your customers? purchase history, buying habits, and preferences.

That way, it would be easier for you to provide a faster and more convenient buying experience for them in the future.

Click-and-collect is a very promising way to increase your sales and improve customer loyalty.

FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?