Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Check our similar posts

The Connection Between Six Sigma and CRM

Six Sigma is an industrial business strategy directed at improving the quality of process outputs by eliminating errors and system variables. The end objective is to achieve a state where 99.99966% of events are likely to be defect free. This would yield a statistical rating of Sigma 6 hence the name.

The process itself is thankfully more user-friendly. It presents a model for evaluating and improving customer relationships based on data provided by an automated customer relations management (CRM) system. However in the nature of human interaction we doubt the 99.99966% is practically achievable.

Six Sigma Fundamentals

The basic tenets of the business doctrine and the features that set off are generally accepted to be the following:

  1. Continuous improvement is essential for success
  1. Business processes can be measured and improved
  1. Top down commitment is fundamental to sustained improvement
  1. Claims of progress must be quantifiable and yield financial benefits
  1. Management must lead with enthusiasm and passion
  1. Verifiable data is a non-negotiable (no guessing)

Steps Towards the Goal

The five basic steps in Six Sigma are define the system, measure key aspects, analyse the relevant data, improve the method, and control the process to sustain improvements. There are a number of variations to this DMAIC model, however it serves the purpose of this article. To create a bridge across to customer relationships management let us assume our CRM data has thrown out a report that average service times in our fast food chicken outlets are as follows.

<2 Minutes 3 to 8 Minutes 9 to 10 Minutes >10 Minutes
45% 30% 20% 5%
Table: Servicing Tickets in Chippy?s Chicken Caf?s

Using DMAIC to unravel the reasons behind this might proceed as follows

  • Define the system in order to understand the process. How are customers prioritised up front, and does the back of store follow suit?
  • Break the system up into manageable process chunks. How long should each take on average? Where are bottlenecks most likely to occur?
  • Analyse the ticket servicing data by store, by time of day, by time of week and by season. Does the type of food ordered have a bearing?
  • Examine all these variables carefully. Should there for example be separate queues for fast and slower orders, are there some recipes needing rejigging
  • Set a goal of 90% of tickets serviced within 8 minutes. Monitor progress carefully. Relate this to individual store profitability. Provide recognition.

Conclusion

A symbiotic relation between CRM and a process improvement system can provide a powerful vehicle for evidencing customer care and providing feedback through measurable results. Denizon has contributed to many strategically important systems.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
ISO in Energy management

Every industry has its own set levels of quality that are considered acceptable or desirable. Energy performance like any other field is governed by some set standards. These differ across regions but international standards do exist.

ISO 50001 is the international energy standard applicable to both large and small organisations irrespective of geographical, cultural or social conditions. It outlines the best energy management practices that are considered to be the best by specifying that an organisation must integrate an energy management system and institute an energy policy, objectives, targets, and action plans taking into account legal requirements and information related to significant energy use. The energy standard is applicable to organisations.

What’s the importance of attaining energy certification?

ISO certification in any industry is a demonstration of quality or that a service or product meets the expected service standards. In energy management, ISO certification is a demonstration that an organisation or company has implemented sustainable energy management systems, completed a baseline of energy use and, is committed to continuously improve its energy performance. In addition, ISO certification assists organisations in the following ways:

? Organisations are able to optimise the existing energy-consuming assets

? Offers guidance on bench-marking, measuring, documenting, and reporting energy intensity improvements and their projected impact on reducing GHG emissions

? Creates transparency and facilitates communication on the management of energy resources

? Promotes energy management best practices and reinforces good energy management behaviours

? Assists facilities in evaluating and prioritising the implementation of new energy-efficient technologies

? Provides a framework for promoting energy efficiency throughout the supply chain

? Facilitates energy management improvements in the context of GHG emission reduction projects: The reduction of carbon emissions means therefore an organisation is able to meet government carbon reduction targets by demonstrating environmental credentials. The accruing benefits are many, ranging from increased investor confidence to more tender opportunities

Energy management software plays a vital role in helping organisations comply with energy standards through improved performance across the various functions in an organisation.

What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?