Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Check our similar posts

Choosing Routes for ESOS Compliance

Along the introduction of Energy Savings Opportunity Scheme in UK is the quick emergence of various companies that offer ESOS compliant services. While some energy audit providers can help, qualified businesses should understand what their compliance options are, how these routes work and learn both the pros and cons in order to carefully take their pick.

Independent ISO 50001 Certification

ISO 50001 comprises the integration and application of processes geared to motivate energy saving and overall improvement. Simply stated, it is a framework that drives the organisation’s governance to realise energy saving strategies by allocating resources and participating in energy management. The good thing about ISO 50001 is that it includes an energy review that documents ideas and opportunities to save more energy.

However, ISO 50001 does not obligate organisations to cover 90% of their overall energy consumption. In case of partial coverage, the company needs to undergo additional energy assessments to evaluate all the significant energy consumption areas.

In order for an ISO 50001 certification to be valid, it must be certified by the United Kingdom Accreditation Service (UKAS), by an accreditation body which is a member of the International Accreditation Forum, or by a body accredited by another EU member state?s national accreditation body.

Display Energy Certificates and Green Deal Assessments

These two kinds of energy assessment reports can also contribute to ESOS compliance. Both of them are carried out by qualified lead assessors and valid for 10 years. However, they are only based on the building structures and services. They do not cover the overall significant areas in energy consumption. Since these reports are valid for 10 years, they would be used for two ESOS reporting periods. Thus, they would not be as current as the ISO 50001 certification. Aside from that, the assessments are purely based on energy efficiency and anyone can qualify to use the software that produce the certifications after taking the accreditation course.

Energy Audits

A successful energy audit leads to better understanding of the company?s energy consumption, identify alternatives, determine cost-effective energy saving opportunities and stimulate energy efficiency. Energy audits are beneficial to the organisation. What makes it complex is that the organisation applying it, needs to clearly define the scope and type of energy audit to use in order to comply with ESOS. Furthermore, the organisation also has to identify the teams that would be competent enough to do the audit work for the building, transport and industrial area, respectively.

Each route is not formed equal. Thus, organisations have the option to either choose one or combine the routes and meet their company needs. The options mentioned are different approaches to ESOS and the core value is to grab the opportunity towards acquiring more savings through efficient energy system.

How Ecovaro Can Help

Ecovaro is passionate about making a difference. We are knowledgeable when it comes to ESOS legislation and regulation, ISO 50001 energy management system, DECs and Green Deal Assessments. More than that, we recognise the great impact of efficient management system to your organisation. And with this, we provide an enthusiastic team of software engineers and expert project managers to offer you our professional help at reasonable price. Ecovaro comes to you fully equipped with services tailored to your organisation’s energy management needs.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
User-Friendly RASCI Accountability Matrices

Right now, you’re probably thinking that’s a statement of opposites. Something dreamed up by a consultant to impress, or just to fill a blog page. But wait. What if I taught you to create order in procedural chaos in five minutes flat? ?Would you be interested then?

The first step is to create a story line ?

Let’s imagine five friends decide to row a boat across a river to an island. Mary is in charge and responsible for steering in the right direction. John on the other hand is going to do the rowing, while Sue who once watched a rowing competition will be on hand to give advice. James will sit up front so he can tell Mary when they have arrived. Finally Kevin is going to have a snooze but wants James to wake him up just before they reach the island.

That’s kind of hard to follow, isn’t it ?

Let’s see if we can make some sense of it with a basic RASCI diagram ?

Responsibility Matrix: Rowing to the Island
Activity Responsible Accountable Supportive Consulted Informed
Person John Mary Sue James Kevin
Role Oarsman Captain Consultant Navigator Sleeper

?

Now let’s add a simple timeline ?

Responsibility Matrix: Rowing to the Island
? Sue John Mary James Kevin
Gives Direction ? ? A ? ?
Rows the Boat ? R ? ? ?
Provides Advice S ? ? ? ?
Announces Arrival ? ? A C ?
Surfaces From Sleep ? ? ? C I
Ties Boat to Tree ? ? A ? ?

?

Things are more complicated in reality ?

Quite correct. Although if I had jumped in at the detail end I might have lost you. Here?s a more serious example.

rasci

?

There?s absolutely no necessity for you so examine the diagram in any detail, other to note the method is even more valuable in large, corporate environments. This one is actually a RACI diagram because there are no supportive roles (which is the way the system was originally configured).

Other varieties you may come across include PACSI (perform, accountable, control, suggest, inform), and RACI-VS that adds verifier and signatory to the original mix. There are several more you can look at Wikipedia if you like.

Ready to work with Denizon?