Matrix Management: Benefits and Pitfalls

Matrix management brings together managers and employees from different departments to collaborate with each other towards the accomplishment of the organizational goals. As much as it is beneficial, matrix management also has limitations. Hence, companies should understand its benefits and pitfalls before implementing this management technique.

Benefits

The following are some of the advantages of matrix management:

Effective Communication of Information

Because of the hybrid nature of the matrix structure, it enables different departments to closely work together and communicate frequently in order to solve project issues. This leads to a proficient information exchange among leaders and subordinates. Consequently, it results to developed strategies, enhanced performance and quick productivity.

Efficient Use of Resources

Resources can be used efficiently in the organisation since it can be shared among functions and projects. As the communication line is more open, the valuable knowledge and highly skilled resources are easily distributed within the organisation.

Increased Motivation

The matrix structure promotes democracy. And with the employees working on a team, they are motivated to perform their duties better. The opinions and expertise of the employees are brought to the table and considered by the managers before they make decisions. This leads to employee satisfaction, empowerment and improved performance.

Flexibility

Since the employees communicate with each other more frequently, decision making becomes speedy and response is adaptive. They can easily adjust with diverse situations that the company encounters.

Skills Development

Matrix employees are pooled out for work assignments, even to projects that are not necessarily in line with their skill background. With this approach to management, employees have the chance to widen their skills and expertise.

Discipline Retention

One significant advantage of matrix management is that it enables the employees to maintain their skills in functional areas while working with multidisciplinary projects. Once the project is completed and the team wraps up, the members remain sharp in their discipline technically and return to their home functions.

Pitfalls

Here are some disadvantages of matrix management:

Power Struggle

In the matrix structure, there is always tension between the functional and project manager. Although their intent is polite, their conflicting demands and competition for control over the same resources make it more difficult.

Internal Complexity

Having more than one manager, the employees might become confused to who their immediate leader is. The dual authority can lead to internal complexity and possible communication problems. Worst, employee dissatisfaction and high employee turnover.

Heightened Conflict

In any given situation where people and resources are shared across projects, there would always be competition and conflict. When these issues are prolonged, conflicts will heightened and will lead to more internal problems.

Increased Stress

For the employees, being part of a matrix structure can be stressful. Their commitment is divided among the projects and their relationship with multiple managers requires various adjustments. Increased stress can negatively affect their performance in the long run.

Excessive Overhead Expenses

Overhead administrative costs, such as salaries, increase in a matrix structure. More expenses, more burden to the organisation. This is a challenge to matrix management that leaders should consider carefully.

These are just some of the advantages and disadvantages of matrix management. The list could go on, depending on the unique circumstances that organisations have. The key is that when you decide to implement matrix management, you should recognise how to take full advantage of its benefits and understand how to lessen, if not eradicate, the pitfalls of this approach to management.

Check our similar posts

Mobile Security

Today’s advanced enterprises make extensive use of mobile devices in order for team members to exchange information, collaborate, and carry out business whenever and wherever they need to. BlackBerries, iPhones, Google Phones, and other smartphones as well as PocketPCs and PDAs are now allowed wireless remote access to the enterprise network.

As a result, they introduce additional vulnerabilities into the system.

  • Bluetooth exploits and unencrypted passwords can allow malicious individuals to gain access to private information.
  • Various wireless technologies that have substantially simplified the task of transferring data have provided openings for malicious code. In addition, the diversity of these wireless technologies combined with the constrained environments of these devices have made it difficult to come up with an all-in-one solution.
  • All PocketPCs, PDAs and smartphones can be synchronised with PCs and laptops, giving malware an entry point into computers and networks. Memory cards are guilty of this too.
  • VoIP, which are usually unencrypted, allow other people to perform unauthorised capture and recording of private conversations.

Mobile security is still an emerging discipline. Because of this, many organisations that allow members’ mobile phone access into the network don’t actually have a specific security policy for such devices.

That’s why we’re here to help. We’ll conduct a thorough evaluation of your security policies and systems in relation to mobile devices and seal gaps we spot along the way. If you don’t have the needed policies or if what you have needs an overhaul, we’ll set everything up (including the needed applications and infrastructure) for you.

Once we’ve got everything in place, you won’t have to worry about the vulnerabilities mentioned earlier. In addition to that, your organisation will already be capable of preventing the following:

  • Access to company information when the phone ends up in the hands of anyone other than the authorised user.
  • Being billed for phone usage due to virus activity
  • Unauthorised phone activity monitoring through spyware
  • Other disruptions caused by mobile-based malware

Other defences we’re capable of putting up include:

What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?