Energy Management Tips

Energy management is of interest to various stakeholders; be it heads of facilities, heads of procurement, heads of environment and sustainability, financial officers, renewable energy managers and heads of energy. Some of the energy management tips that can be used to achieve considerable energy savings are:

1) Purchasing energy supplies at the lowest possible price

2) Managing energy use at peak efficiency

3) Utilising the most appropriate technology

1. Purchasing energy supplies at the lowest possible price
Purchasing energy supplies at the lowest possible price could be the starting point to great savings of energy costs. This can be achieved through switching your energy supplier. It is always advisable for companies to always take time to compare the energy tariffs to ensure they are on the best tariff and make great savings.

2. Managing energy use at peak efficiency

(a) Free help

There are some online tools that offer energy-efficiency improvements. These could come in handy in helping someone find out where to make energy-efficiency improvements.

(b) Energy monitors

An energy monitor is a gadget that estimate in real time how much energy you’re using. This can help one see where to cut back on energy consumption.

(c) Turning down thermostats

Turning down radiators especially in rooms that are rarely used/empty rooms or programming the heating to turn off when no one is there can go a long way in saving energy and energy costs.

(d) Use energy saving bulbs

Use of energy-saving light bulbs can cut down on energy usage drastically. Replacing all the light bulbs with energy-saving ones could make significant savings on energy usage and replacement costs since energy saving bulbs also have a longer life.

(e) Switching off unnecessary lights

It is also important to switch off lights that are not in use and to use the best bulb for the size of room.

(f) Sealing all heat escape routes

It is recommended that all gaps should be sealed in order to stop heat from escaping. Some of the heat escape routes are: windows, doors, chimneys and fireplaces, floorboards and skirting and loft hatches. The ways through which this can be achieved are:

? Windows- use of draught-proofing strips around the frame, brush strips work better for sash windows

? Doors – use of draught-proofing strips for gaps around the edges and brush or hinged-flap draught excluders on the bottom of doors

? Chimney and fireplace – inflatable cushions can be used to block the chimney or fit a cap over the chimney pot on fireplaces that are not used often

? Floorboards and skirting – Using a flexible silicon-based filler to fill the gaps

? Loft hatches – the use of draught-proofing strips can help to prevent hot air escaping
It is also important to consider smaller holes of air such as keyholes and letterboxes.

3. Utilising the most appropriate technology
Utilisation of technology as an energy management tool can be by way of choosing more energy efficient gadgets and by way of running technological gadgets in an energy efficient manner.

Check our similar posts

A Definitive List of the Business Benefits of Cloud Computing ? Part 4

Lowers cost of analytics

Big data and business intelligence (BI) have become the bywords in the current global economy. As consumers today browse, buy, communicate, use their gadgets, and interact on social networks, they leave in their trail a whole lot of data that can serve as a goldmine of information organisations can glean from. With such information at the disposal of or easily obtainable by businesses, you can expect that big data solutions will be at the forefront of these organisations’ efforts to create value for the customer and gain advantage over competitors.

Research firm Gartner’s latest survey of CIOs which included 2,300 respondents from 44 countries revealed that the three top priority investments for 2012 to 2015 as rated by the CIOs surveyed are Analytics and Business Intelligence, Mobile Technologies, and Cloud Computing. In addition, Gartner predicts that about $232 million in IT spending until 2016 will be driven by big data. This is a clear indication that the intelligent use of data is going to be a defining factor in most organisations.

Yet while big data offers a lot of growth opportunities for enterprises, there remains a big question on the capability of businesses to leverage on the available data. Do they have the means to deploy the required storage, computing resources, and analytical software needed to capture value from the rapidly increasing torrent of data?

Without the appropriate analytics and BI tools, raw data will remain as it is – a potential source of valuable information but always unutilised. Only when they can take the time, complexity and expense out of processing huge datasets obtained from customers, employees, consumers in general, and sensor-embedded products can businesses hope to fully harness the power of information.

So where does the cloud fit into all these?

Access to analytics and BI solutions have all too often been limited to large corporations, and within these organisations, a few business analysts and key executives. But that could quickly become a thing of the past because the cloud can now provide exactly what big data analytics requires – the ability to draw on large amounts of data and massive computing power – at a fraction of the cost and complexity these resources once entailed.

At their end, cloud service providers already deal with the storage, hardware, software, networking and security requirements needed for BI, with the resources available on an on-demand, pay-as-you-go approach. In doing so, they make analytics and access to relevant information simplified, and therefore more ubiquitous in the long run.

As the amount of data continues to grow exponentially on a daily basis, sophisticated analytics will be a priority IT technology across all industries, with organisations scrambling to find impactful insights from big data. Cloud-based services ensure that both small and large companies can benefit from the significantly reduced costs of BI solutions as well as the quick delivery of information, allowing for precise and insightful analytics as close to real time as possible.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Introduction to Matrix Management

A leader is responsible to empower his people and get the best out of them. Yet an organisational structure can either help or hamper performance. Worst, it can make or break success.

Looking at the fast-changing world of the global economy, whatsoever slows up and obstructs decision-making is a challenge. Hierarchical management is rather unattractive and functional silos are unlikable. Instead, employees desire to create teams equipped with flexibility, cooperation and coordination.

Recognising that companies have both vertical and horizontal chains of command, the matrix model is created. The concept of this principle lies in the ability to manage the collaboration of people across various functions and achieve strategic objectives through key projects.

Consider this scenario:

Ian is a sales executive of a company. His role is to sell a new product under the supervision of a product manager. The manager is expert about the product and she is accountable to coordinate the people across the organisation, making sure the product is achieved.

Moreover, Ian also reports to the sales manager who oversees his overall performance, monitors his pay and benefits and guides his personal development.

Complicated it may seem but this set-up is common to companies that seek to maximise the effect of expert product managers, without compromising the function of the staffing overhead in control of the organisation. This is a successful approach to management known as Matrix Management.

Matrix Management Defined

Matrix management is a type of organisational management wherein employees of similar skills are shared for work assignments. Simply stated, it is a structure in which the workforce reports to multiple managers of different roles.

For example, a team of engineers work under the supervision of their department head, which is the engineering manager. However, the same people from the engineering department may be assigned to other projects where they report to the project manager. Thus, while working on a designated project, each engineer has to work under various managers to accomplish the job.

Historical Background

Although some critics say that matrix management was first adopted in the Second World War, its origins can be traced more reliably to the US space programme of the 1960’s when President Kennedy has drawn his vision of putting a man on the moon. In order to accomplish the objective, NASA revolutionised its approach on the project leading to the consequent birth of ?matrix organisation?. This strategic method facilitated the energy, creativity and decision-making to triumph the grand vision.

In the 1970’s, matrix organisation received huge attention as the only new form of organisation in the twentieth century. In fact it was applied by Digital Equipment, Xerox, and Citibank. Despite its initial success, the enthusiasm of corporations with regards to matrix organisation declined in the 1980’s, largely because it was complex.

Furthermore, the drive for motivating people to work creatively and flexibly has only strengthened. And by the 1990’s, the evolution of matrix management geared towards creation and empowerment of virtual teams that focused on customer service and speedy delivery.

Although all forms of matrix has loopholes and flaws, research says that until today, matrix management is still the leading approach used by companies to achieve organisational goals.

Systems Integration as a means to cost reduction

System integration in an organisation refers to a process whereby two or more separate systems are brought together for the purpose of pooling the value in the separate systems into one main system. A key component of process consolidation within any organisation is the utilisation of IT as a means to achieve this end. As such, system integration as a means to cost reduction offers organisations the opportunity to adopt and implement lean principles with the attendant benefits. The implementation of lean techniques requires an adherence to stated methods to facilitate the elimination of wastage in the production of goods and services. In summary, the lean philosophy seeks to optimise the speed of good and service production, through the elimination of waste.

While analysing some of the traditional sources of waste in organisational activities, things like overproduction, inventory, underutilised ideas, transmission of information and ideas, transportation of people and material, time wastage and over-processing stand out. The fact is that companies can eliminate a significant portion of waste through the utilisation of IT to consolidate processes within their organisation.

Adopting lean principles calls for the identification of all of the steps in the company value stream for each product family for the purpose of the eliminating the steps that do not create any value. In other words, this step calls for the elimination of redundant steps in the process flow. This is exactly what the utilisation of IT to consolidate processes offers a company. For instance, the adoption of a central cloud system across a large organisation with several facilities could increase efficiencies in that company. Such a company would drastically reduce the redundancies that used to exist in the different facilities, eliminate the instances of hardware and software purchase, maintenance and upgrade, modernise quality assurances processes and identify further opportunities for improvement.

Perhaps, from the company’s point of view, and from the perspective of lean process implementation, the most important factor is?the effect it has?on the bottom line.’reducing the number of hardware, eliminating the need for maintaining and upgrading hardware, removing the necessity for software purchase and upgrade across facilities also contributes to a significant reduction in operational costs.?This reduction in the cost of operations leads to a corresponding increase in the profit margin of the company.

Applying system integration as a means to cost reduction can also lead to the reduction in the number of people needed to operate the previous systems that have been integrated into one primary unit. Usually, companies must hire people with specialised knowledge to operate and maintain the various systems. Such employees must also receive special training and frequent ongoing education to constantly stay informed of the latest trends in process management. With the integration of the system, the number of people needed to maintain the central system will be significantly reduced, also improving the security of information and other company trade secrets.

Based on an analysis of the specific needs that exist in a particular company environment, a system integration method that is peculiar to the needs of that organisation will be worked out. Some companies may find it more cost-effective to use the services of independent cloud service providers. Others with more resources and facilities may decide to set up their own cloud service systems. Often, private cloud service system capabilities far exceed the requirements of the initiating company, meaning that they could decide to “sell” the extra “space” on their cloud network to other interested parties.

A company that fully applies the lean principles towards the integration of its systems will be able to take on additional tasks as a result of the system consolidation. This leads to an increase in performance, and more efficiency due to the seamless syncing of information in a timely and uniform manner.

Companies have to combine a top-down and a bottom-up approach towards their system integration methods. A top-down approach simply utilises the overall system structure that is already in place as a starting point, or as a foundation. The bottom-up approach seeks to design new systems for integration into the system. Other methods of system integration include the vertical, star and horizontal integration methods. In the horizontal method, a specified subsystem is used as an interface for communication between other subsystems. For the star system integration method, the subsystems are connected to the system in a manner that resembles the depiction of a star; hence, the name. Vertical integration refers to the method of the integration of subsystems based on an analysis of their functionality.

The key to successful system integration for the purpose of cost reduction is to take a manual approach towards identifying the various applicable lean principles, with respect to the system integration process. For instance, when value has been specified, it becomes easier to identify value streams. The other process of removing unnecessary or redundant steps will be easier to follow when the whole project is viewed from the whole, rather than’the part. Creating an integrated system needs some?patience?in order to work out kinks and achieve the desired perfect value that creates no waste.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?