Competencies, Roles and Responsibilities of Lead Assessors

Any organisation that opts for energy audits, Display of Energy Certificates and Green Deal Assessments needs a lead assessor to review the chosen ESOS compliance routes. The Derivative provides that energy audits should be carried out independently by qualified and accredited experts. Additionally, these audits should be implemented as well as supervised by independent authorities under the national legislation.

Lead assessors undertake several roles in ESOS assessments. He or she is the one responsible to take the lead of the entire assessment team, prepare the plan, conduct the meetings and submit the formal report to governing authorities. Nevertheless, selecting an appropriate lead assessor is an important element that every organisation should carefully consider.

Competencies Requirements of Lead Assessors

Lead assessors should be knowledgeable enough with in-depth expertise in carrying out energy efficiency assessment. They should also possess foundational, functional and technical competencies to deliver the task effectively. Likewise, consider the assessors? sector experiences, familiarity with your business? technologies and properties, and accreditation with prescribed standards.

As you choose your lead assessor, contemplate on the skills and qualifications that would give your organisation benefits.

Roles and Responsibilities of Lead Assessors

The business organisation is responsible for the overall legal ESOS compliance. Moreover, here are some of the roles and responsibilities that lead assessors should assume in ESOS assessments.

The lead assessor agrees on the audit methodologies that the organisation would undergo in new audits. He or she agrees with the ESOS participant regarding the audit timetable, sampling approach and visits required. It is also the lead assessor?s role to identify the opportunities on energy saving and assist in calculating the cost savings from the measures taken. During the ESOS audits, the lead assessor determines the energy use profiles, presents the recommendations and reviews the entire assessment as a whole. Furthermore, he or she should maintain the evidence pack of the ESOS to uphold the audit’s credibility, its findings and recommendations.

Finding Lead Assessors

Energy and environment professionals would only be able to demonstrate their expertise as lead assessors upon registering in a professional body accredited by the Environment Agency. Any business that needs a lead assessor is advised to check on the EA?s website to see the details of approved registers.

Lead assessors can either be in-house experts or external professionals. However, they should be able to provide proof of membership as an approved register to take the role of a lead assessor. If the organisation has an internal lead assessor, the company should then take the final ESOS assessment to two board-level directors that would sign the formal report.

Indeed, the lead assessor is an organisation’s partner when it comes to delivering great results. With good professional conduct and excellent management of an assessment team, the lead assessor can help achieve breakthrough energy efficiency strategies. More than anything else, the organisation will benefit from maximum energy savings opportunities ahead. Thus, every qualified business enterprise should invest in finding the best lead assessor to guide them towards success.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Green Business!

Carbon emissions reduction has evolved beyond simply good citizenship to being a business tool. Implementing ?green? initiatives is now a competitive weapon which defines real business opportunities and bottom line savings that can contribute significant financial value to the organisation while meeting demanding customer requirements for sustainable and low-carbon products.

Energy efficiency is a low cost resource for achieving carbon emissions reduction. Better energy efficiency simply translates to lesser carbon emissions and less energy usage which translates into saved costs.

Reduction of an organisations carbon footprint is each and everyone?s responsibility. Human activities are the key responsibility for the release of greenhouse gas emissions into the atmosphere. These include usage of electricity generated from fossil fuel, heating or driving.

At the corporate level, various measures can be instigated to increase energy efficiency. Some of these can be, having zone lighting with sensors to minimise unnecessary office lighting, timers on large IT equipment, promoting energy efficient behaviour in the office, asking staff to switch off and unplug appliances when not in use and minimising staff travel.
At the individual level; it is the small habits that count; cultivating the habit of switching off unnecessary lights, plugging out appliances that are not in use, using video conferencing or online chatting instead of having to travel to meetings, using public transport instead of taking a taxi/ personal car and using energy efficient cars.

All these initiatives assist organisations in their corporate social responsibility reports and play a role in sustainability rankings which is instrumental to customers who are increasingly considering sustainability rankings in investment decisions, while achieving the goal of cost reduction internally.

Ready to work with Denizon?