Big Energy Data Management

Recent times have seen the advent of cloud based services and solutions where energy data is being stored in the cloud and being accessed from anywhere, anytime through remote mobile devices. This has been made possible by web-based systems that can usually bring real-time meter-data into clear view allowing for proactive business and facility management decisions. Some web based systems may even support multi utility metering points and come in handy for businesses operating multiple sites.

Whereas all this has been made possible by increased use of smart devices/ intelligent energy devices that capture data at more regular intervals; the challenge facing businesses is how to transform the large data/big volume of data into insights and action plans that would translate into increased performance in terms of increased energy efficiency or power reliability.

A solution to this dilemma facing businesses that do not know how to process big energy data, may lie in energy management software. Energy management software?s have the capability to analyse energy consumption for, electricity, gas, water, heat, renewables and oil. They enable users to track consumption for different sources so that consumers are able to identify areas of inefficiency and where they can reduce energy consumption, Energy software also helps in analytics and reporting. The analytics and reporting features that come with energy software are usually able to:

? Generate charts and graphs ? some software?s give you an option to select from different graphs

? Do graphical comparisons e.g. generate graphs of the seasonal average for the same season and day type

? Generate reports that are highly customisable

While choosing from the wide range of software available, it is important for businesses to consider software that has the capacity to support their data volume, software that can support the frequency with which their data is captured and support the data accuracy or reliability.

Energy software alone may not make the magic happen. Businesses may need to invest in trained human resources in order to realise the best value from their big energy data. Experts in energy management would then apply human expertise to leverage the data and analyse it with proficiency to make it meaningful to one?s business.

Check our similar posts

Understanding Carbon Emissions

Carbon emission is one of the hottest issues in the world of energy and environment today. While it is supposedly an essential component of the ecosystem, it has already become a large contributing factor to climate change. Carbon emission might be good but abuse of this natural process has made it harmful to people across the globe.

This series of articles aims to help people understand the intricacies of carbon emission and what society can do to efficiently manage this natural occurrence.

Natural Carbon Cycle

Two important elements in the carbon cycle are carbon, which is present in every living thing all over the world; and oxygen, which is found in the air that people breathe. When these two bond together, they create a colourless and odourless greenhouse gas known as carbon dioxide, which is then crucial to trapping infrared radiation heat in the atmosphere and also for weathering rocks.

Carbon is not only found in the atmosphere of the earth. It is also an element found in oceans, plants, coal deposits, oil and natural gas from deep down the earth?s core. Through the carbon cycle, carbon moves naturally from one portion of the earth to another. Looking at this scenario, one can see that the natural carbon cycle is a healthy way to release carbon dioxide into the air in order to be absorbed again by trees and plants.

Altered Carbon Cycle

The natural circulation of carbon among the atmosphere is vital to humankind. However, studies show that humans misuse this natural cycle and abuse it instead. Whenever people burn fossil fuels such as coal, oil and natural gas, they produce carbon dioxide ? which is an excess addition to the natural flow of carbon in the environment. The problem is that the release of carbon dioxide is much more than what plants and trees can re-absorb. People are not only adding CO2 to the atmosphere, they are also influencing the ability of natural sinks, such as forests, to remove it from the atmosphere. Humans alter the carbon cycle by contributing doubled or tripled greenhouse gas to the atmosphere, faster than nature can ever eliminate. Worst, nature?s balance is destroyed.

The Result

Greenhouse gases include carbon dioxide, methane, nitrous oxide, fluorinated gas and other gases. Although these gasses contribute to climate change, carbon dioxide is the largest greenhouse gas that humans emit. The reason why people talk about carbon emissions most, is because we produce more carbon dioxide than any other greenhouse gas.

The increasing amount of carbon emissions cause global warming to become more evident. All the extra carbon dioxide causes the earth?s overall temperature to rise as well. As the temperature increases, climate also changes unpredictably. Flood, droughts, heat waves and hurricanes are now widely experienced even in places where these phenomenon never used to happen.

To be able to reduce the risk of more severe weather conditions means burning less fossil fuels and shifting more to renewable sources. This is never easy. But, definitely, it’s worth a try.

How SOA can help Transformation

Undoubtedly, today’s business leaders face myriad challenges ranging from fierce market competition to increasing market unpredictability. In addition, the modern consumer is more informed and in control of what, where and how they purchase. Couple these challenges with effects of globalization, and you will appreciate that need for business transformation is more of a necessity than a privilege.

As recent business trends show, top companies are characterized by organizational and operational agility. Instead of being shaken by rapid technological changes and aftershocks associated with market changes, they are actually invigorated by these trends. In order to survive in these turbulent times, business leaders are opting to implement corporate transformation initiatives to develop leaner, more agile and productive operations. In line with this, service oriented architecture (SOA) has emerged as an essential IT transformation approach for implementing sustainable business agility.

By definition, service oriented architecture is a set of principles and techniques for developing and designing software in form of business functionalities. SOA allows users to compile together large parts of functionality to create ad hoc service software entirely from the template software. This is why it is preferred by CIOs that are looking to develop business agility. It breaks down business operations into functional components (referred to as services) that can be easily and economically merged and reused in applicable scenarios to meet evolving business needs. This enhances overall efficiency, and improves organizational interconnectivity.

SOA identifies shortcomings of traditional IT transformation approaches that were framed in monolithic and vertical silos all dependent on isolated business units. The current business environment requires that individual business units should be capable of supporting multiple types of users, multiple communication channels and multiple lines of business. In addition, it has to be flexible enough to adapt to changing market needs. In case one is running a global business enterprise, SOA-enabled business transformation can assist in achieving sustainable agility and productivity through a globally integrated IT platform. SOA realizes its IT and business benefits by adopting a design and analyzing methodology when developing services. In this sense a service consists of an independent business unit of functionality that is only available through a defined interface. Services can either be in the form of nano-enterprises or mega-enterprises.

Furthermore, with SOA an organization can adopt a holistic approach to solve a problem. This is because the business has more control over its functions. SOA frees the organization from constraints attributed to having a rigid single use application that is intricately meshed into a fragmented information technology infrastructure. Companies that have adopted service oriented architecture as their IT transformation approach, can easily repurpose, reorganize and rescale services on demand in order to develop new business processes that are adaptable to changes in the business environment. In addition, it enables companies to upgrade and enhance their existing systems without incurring huge costs associated with ‘rip and replace’ IT projects.

In summary, SOA can be termed as the cornerstone of modern IT transformation initiatives. If properly implemented great benefits and a sharp competitive advantage can be achieved. SOA assists in transforming existing disparate and unconnected processes and applications into reusable services; creating an avenue where services can be rapidly reassembled and developed to support market changes.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Armstrong World Industries is going Cradle-to-Cradle

The Cradle-to-Cradle concept holds that human effort must be biometric, in other words enrich the environment within which it functions as opposed to breaking it down. This means manufacturing must be holistic in the sense that everything is reusable and nothing is destroyed. Armstrong World Industries was the first global mineral ceiling tile manufacturer to achieve Cradle-to-Cradle certification. We decided to take a closer look at how they achieved this.

Armstrong Worldwide Industries has five plants in the UK alone. These produce an annual turnover of ?2.7 billion. They have been making ceilings for more than 150 years. Fifteen years ago and way ahead of the curve it started recycling, and has maintained a policy of not charging contractors for waste ever since. Along the way, it developed a product that can be re-used indefinitely.

The Challenge

Going green must also be commercially sustainable. In Armstrong?s case, it faced a rise in landfill tax from ?8 per tonne per year to ?80 per tonne per year. This turned the financial cost of waste from a nuisance to a threat. It calculated that recycling one tonne of ceiling materials would:

  • Eliminate 456kg of CO2 equivalents by saving 1,390 kWh of electricity
  • Preserve 11 tons of virgin material and save 1,892 gallons of potable water

They hoped to extend their own recycling project by asking demolition and strip-out contractors to join it, so they could reprocess their scrap as new batches of tiles too.

The Achievement

As things stand today, an Armstrong ceiling tile now contains an average of 82% recycled content. Indeed, if they could find more ceilings to recycle this could reach 100%. In the past two years alone, Armstrong Worldwide Industries UK has saved 130,399m? of greenfield from landfill, being the equivalent of 520 skips that would otherwise have cost contractors over ?88,000 to dispose of.

The Broader Context

Armstrong Worldwide Industries is a global leader in water management, and is bent on minimising its reliance on fossil for energy. It has implemented online measurement systems that feed data to its corporate environmental, health and safety system. This empowers it to produce reports, track corrective actions and measure progress towards its overall goal of being carbon neutral.

Next time you sit beneath an Armstrong Worldwide Industries panelled ceiling, spare a thought for how much ecoVaro consumption analytics could contribute to your bottom line (and how it would feel to be lighter on carbon too).

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?