Competencies, Roles and Responsibilities of Lead Assessors

Any organisation that opts for energy audits, Display of Energy Certificates and Green Deal Assessments needs a lead assessor to review the chosen ESOS compliance routes. The Derivative provides that energy audits should be carried out independently by qualified and accredited experts. Additionally, these audits should be implemented as well as supervised by independent authorities under the national legislation.

Lead assessors undertake several roles in ESOS assessments. He or she is the one responsible to take the lead of the entire assessment team, prepare the plan, conduct the meetings and submit the formal report to governing authorities. Nevertheless, selecting an appropriate lead assessor is an important element that every organisation should carefully consider.

Competencies Requirements of Lead Assessors

Lead assessors should be knowledgeable enough with in-depth expertise in carrying out energy efficiency assessment. They should also possess foundational, functional and technical competencies to deliver the task effectively. Likewise, consider the assessors? sector experiences, familiarity with your business? technologies and properties, and accreditation with prescribed standards.

As you choose your lead assessor, contemplate on the skills and qualifications that would give your organisation benefits.

Roles and Responsibilities of Lead Assessors

The business organisation is responsible for the overall legal ESOS compliance. Moreover, here are some of the roles and responsibilities that lead assessors should assume in ESOS assessments.

The lead assessor agrees on the audit methodologies that the organisation would undergo in new audits. He or she agrees with the ESOS participant regarding the audit timetable, sampling approach and visits required. It is also the lead assessor?s role to identify the opportunities on energy saving and assist in calculating the cost savings from the measures taken. During the ESOS audits, the lead assessor determines the energy use profiles, presents the recommendations and reviews the entire assessment as a whole. Furthermore, he or she should maintain the evidence pack of the ESOS to uphold the audit’s credibility, its findings and recommendations.

Finding Lead Assessors

Energy and environment professionals would only be able to demonstrate their expertise as lead assessors upon registering in a professional body accredited by the Environment Agency. Any business that needs a lead assessor is advised to check on the EA?s website to see the details of approved registers.

Lead assessors can either be in-house experts or external professionals. However, they should be able to provide proof of membership as an approved register to take the role of a lead assessor. If the organisation has an internal lead assessor, the company should then take the final ESOS assessment to two board-level directors that would sign the formal report.

Indeed, the lead assessor is an organisation’s partner when it comes to delivering great results. With good professional conduct and excellent management of an assessment team, the lead assessor can help achieve breakthrough energy efficiency strategies. More than anything else, the organisation will benefit from maximum energy savings opportunities ahead. Thus, every qualified business enterprise should invest in finding the best lead assessor to guide them towards success.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

ecoVaro to tackle water stress

For many people within the UK, water is not really something to worry about. Surely enough of it falls out the sky throughout the year that it does feel highly unlikely that we?ll ever run out of it. There certainly does seem to be an abundance of Branded Water available in plastic bottles on our supermarket shelves.

Water, water, every where,
And all the boards did shrink;
Water, water, every where,
Nor any drop to drink.

The Rime of the Ancient Mariner ? Samuel Taylor Coleridge

Despite this, Once-unthinkable water crises are becoming commonplace.  If you consider that In England and Wales, we use 16 billion litres of clean drinking water every day ? that’s equivalent to 6,400 Olympic sized swimming pools.

Currently, water companies can provide slightly more than we need ? 2 billion litres are available above and beyond what we’re using.  In some areas, though, such as south east England, there is no surplus and, as such, these regions are more likely to face supply restrictions in a dry year.

If we take little moment to reflect on some of the most notable water related stories over the past few years, we’ll start to get a picture of just how real the potential and the threat of water shortages can be.

Reservoirs in Chennai, India?s sixth-largest city, are nearly dry right now. Last year, residents of Cape Town, South Africa narrowly avoided their own Day Zero water shut-off.

It was only year before that, Rome rationed water to conserve scarce resources.

Climate change is likely to mean higher temperatures which may drive up the demand for water (alongside population growth) and increase evaporation from reservoirs and water courses during spring and summer.

The impact of climate change on total rainfall is uncertain, but the rain that does fall is likely to arrive in heavier bursts in winter and summer. Heavier rain tends to flow off land more quickly into rivers and out to sea, rather than recharging groundwater aquifers.

A greater chance of prolonged dry periods is also conceivable.  This combined with the harsh reality that no human population can sustain itself without sufficient access to fresh water.

If present conditions continue, 2 out of 3 people on Earth will live within a water-stressed zone by 2025

What is water stress?

Water stress is a term used to describe situation when demand for water is greater than the amount of water available at a certain period in time, and also when water is of poor quality and this restricts its usage. Water stress means deterioration in both the quantity of available water and the quality of available water due to factors affecting available water.

Water stress refers to the ability, or lack thereof, to meet human and ecological demand for water. Compared to scarcity, water stress is a more inclusive and broader concept.

Water Stress considers several physical aspects related to water resources, including water scarcity, but also water quality, environmental flows, and the accessibility of water.

Supply and Demand

Major factors involved when water scarcity strikes is when a growing populations demand for water exceeds the areas ability to service that need.

Increased food production and development programs also lead to increased demand for water, which ultimately leads to water stress.

Increased need for agricultural irrigation in order to produce more crops or sustain livestock are major contributors to localised water stress.

Overconsumption

The demand for water in a given population is fairly unpredictable.  Primarily, based on the fact that you can never accurately predict human behaviour and changes in climate.

If too many people are consuming more water than they need because they mistakenly believe that water is freely available and plentiful, then water stress could eventually occur.

This is also linked to perceived economic prosperity of a give region.  Manufacturing demand for water can have huge impact regardless whether water is actively used within the manufacturing process or not.

Water Quality

Water quality in any given area is never static.  Water stress could happen as a result of rising pollution levels having a direct impact on water quality.

Water contamination happens when new industries either knowingly or unknowingly contaminate water with their industrial practices.

Largely, this can happen and frequently does so because these industries do not take effective control of monitoring and managing their impact on communal water supplies.  Incorrectly assuming this is the responsibility of an additional third party like the regional water company.

The truth is, water quality and careful monitoring of it is all of our responsibility.

Water Scarcity

Simple increases in demand for water can in itself contribute to water scarcity. However,  these are often preceded by other factors like poverty or just the natural scarcity of water in the area.

In many instances, the initial locations of towns or cities were not influenced by the close proximity of natural resources like water, but rather in pursuit of the extraction of other resources like Gold, Coal or Diamonds.

For Instance, Johannesburg,  South Africa is the largest City in South Africa and is one of the 50 largest urban areas in the world. It is also located in the mineral rich Witwatersrand range of hills and is the centre of large-scale gold and diamond trade.

Johannesburg is also one of the only major cities of the world that was not built on a river or harbour.   However, it does have streams that contribute to two of Southern Africas mightiest rivers – Limpopo and the Orange rivers.  However, most of the springs from which many of these streams emanate are now covered in concrete!

Water Stress and Agriculture

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of real-time data and utilize cloud-based storage and processing power to curate it.

Sentek?s technology can be found in remote places like Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily repositioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to an end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By accurately monitoring water can be saved until when the plant really needs it.

Peter also emphasises that crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return.

The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us.

Ecovaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

A Quarter of the World?s Population, Face High Water Stress

Data from WRI?s Aqueduct tools reveal that 17 countries ? home to one-quarter of the world?s population?face ?extremely high? levels of baseline water stress, where irrigated agriculture, industries and municipalities withdraw more than 80% of their available supply on average every year. 

Water stress poses serious threats to human lives, livelihoods and business stability. It’s poised to worsen unless countries act: Population growth, socioeconomic development and urbanization are increasing water demands, while climate change can make precipitation and demand more variable.  

How to manage water stress

Water stress is just one dimension of water security. However, like any challenge, its outlook depends on adequate monitoring and management of environmental data.

Even countries with relatively high water stress have effectively secured their water supplies through proper management by leveraging the knowledge they have garnered by learning from the data they gathered.

3 ways to help reduce water stress

In any geography, water stress can be reduced by measures ranging from common sense to innovative technology solutions.

There are countless solutions, but here are three of the most straightforward:

1. Increase agricultural efficiency: The world needs to make every drop of water go further in its food systems. Farmers can use seeds that require less water and improve their irrigation techniques by using precision watering rather than flooding their fields.

Businesses need to increase investments to improve water productivity, while engineers develop technologies that improve efficiency in agriculture.

Consumers can reduce food loss and waste, which uses one-quarter of all agricultural water.

2. Invest in grey and green infrastructure:  D Data produced by Aqueduct Alliance  –  shows that water stress can vary tremendously over the year.  WRI and the World Bank?s research shows that built infrastructure (like pipes and treatment plants) and green infrastructure (like wetlands and healthy watersheds) can work in tandem to tackle issues of both water supply and water quality.

3. Treat, reuse and recycle:  We need to stop thinking of wastewater as waste.

Treating and reusing it creates a ?new? water source.

There are also useful resources in wastewater that can be harvested to help lower water treatment costs. For example, plants in Xiangyang, China and Washington, D.C. reuse or sell the energy- and nutrient-rich byproducts captured during wastewater treatment.

Summary

The data is undeniably clear, there are very worrying trends in water.

Businesses and other other organisations need to start taking action now and investing in better monitoring and management, we can solve water issues for the good of people, economies and the planet. We collectively cannot kick this can down the road any further, or assume that this problem will be solved by others.

It is time, for a collective sense of responsibility and for everyone to invest in future prosperity of our Planet as a collective whole.  Ecological preservation should be at the forefront of all business plans because at the end of the day profit is meaningless without an environment to enjoy it in!

A Small External Enterprise Development Team is Cheaper than Your Own

Time is money in the application development business. We have to get to market sooner so someone else does not gazump us, and pip us at the post. We increase the likelihood of this with every delay. Moreover, the longer your in-house team takes to get you through the swamp, the higher the project cost to you.

Of course, in theory this should not be the case. Why bring in a team from outside, and pay more to support their corporate structure? Even going for a contract micro team ought not to make financial sense, because we have to fund their mark-up and their profit taking. Our common sense tells us that this is crazy. But, hold that thought for a minute. What would you say if a small external enterprise development team was actually cheaper? To achieve that, they would have to work faster too.

The costs of an Enterprise Internal Development Team

Even if you were able to keep your own team fully occupied ? which is unlikely in the long term ? having your own digital talent pool works out expensive when you factor in the total cost. Your difficulties begin with the hiring process, especially if you do not fully understand the project topic, and have to subcontract the hiring task.

If you decide to attempt this yourself, your learning curve could push out the project completion date. Whichever way you decide to go, you are up for paying advertising, orientation training, technical upskilling, travel expenses, and salaries all of which are going to rob your time. Moreover, a wrong recruitment decision would cost three times the new employee?s annual salary, and there is no sign of that changing.

But that is not all, not all by far. If want your in-house team to keep their work files in the office, then you are going to have to buy them laptops, plus extra screens so they can keep track of what they are doing. Those laptops are going to need desks, and those employees, chairs to sit in. Plus, you are going to need expensive workspace with good security for your team?s base.

If we really wanted to lay it on, we would add software / cloud costs, telephony, internet access, and ongoing technical training to the growing pile. We did a quick scan on PayScale. The median salary of a computer programmer in Ireland is ?38,000 per year and that is just the beginning. If you need a program manager for your computer software, their salary will be almost double that at ?65,000 annually.

Advantages of R&D outsourcing

The case for a small externally sourced enterprise development team revolves around the opportunity cost ? or loss to put in bluntly ? of hiring your own specialist staff for projects. If you own a smaller business with up to 100 people, you are going to have to find work for idle digital fingers, after you roll out your in-house enterprise project. If you do not, you head down the road towards owning a dysfunctional team lacking a core, shared objective to drive them forward.

Compared to this potential extravagance, hiring a small external enterprise development team on an as-needed basis makes far more sense. Using a good service provider as a ?convenience store? drives enterprise development costs down through the floor, relative to having your own permanent team. Moreover, the major savings that arise are in your hands and free to deploy as opportunities arise. A successful business is quick and nimble, with cash flow on tap for R & D.

Eck Industries Sheds Fresh Light

William Eck began his business in 1948 in a 650m2 garage building. The aluminium foundry prospered, and now has an 18,500m2 factory in Manitowoc, Wisconsin employing 250 people casting a variety of casings. Like high-tech industries around the globe it needs effective illumination. After it measured its carbon footprint, it realised it needed energy efficient lighting too.

When Eck Industries began its review it had around 360 high-pressure sodium lights throughout the plant. Their operating cost was substantial. After taking independent advice from an independent agency they realised they needed to replace these with more energy-efficient fluorescent lights that consume half as much energy.

The feasibility team conducted performance tests to determine the optimum solution. After selecting enclosed, gasketed and waterproof T8 fluorescents (available in G13 bipin, single pin and recessed double contacts) they collaborated with the supplier to calculate the best combination of 4 and 6 bulb fixtures.

The fittings they chose cost $60,000 plus $10,000 installation. However a $33,000 energy rebate wrote down 47% of this immediately. They achieved further energy savings by attaching motion sensors to lights over low-traffic walkways.

The retrofit was a huge success, with an 8 month payback via a direct operating saving of $55,000 a year. Over and above enhanced illumination Eck Industries slashed 674,000 kilowatt hours off its annual lighting bill. During the 20 year design life, this equates to a total 13.5 million kilowatt hours. Other quantifiable benefits include 443 tons less carbon, 2 tons less sulphur dioxide, and 1 ton less nitrogen oxide per year.

Many companies face similar opportunities but fail to capitalise on them for a number of reasons. These may include not being aware of what is available, lacking technical insight, being short of working capital and simply being too busy to focus on them.

Eck Industries got several things right. Firstly, they consulted an independent specialist; secondly they trusted their supplier to provide honest advice, and thirdly they accepted that any significant saving is worth chasing down. Other spin-offs were safer, more attractive working conditions and an opportunity to take their foot off the carbon pedal. This is an excellent example of what is possible when you try.

If you have measured your illumination cost and are concerned about it (but are unsure what the metric means within the bigger picture) then Ecovaro offers online reports comparing it with your industry average, and highlights the cost-benefits of alternative lighting. 

Ready to work with Denizon?