Big Energy Data Management

Recent times have seen the advent of cloud based services and solutions where energy data is being stored in the cloud and being accessed from anywhere, anytime through remote mobile devices. This has been made possible by web-based systems that can usually bring real-time meter-data into clear view allowing for proactive business and facility management decisions. Some web based systems may even support multi utility metering points and come in handy for businesses operating multiple sites.

Whereas all this has been made possible by increased use of smart devices/ intelligent energy devices that capture data at more regular intervals; the challenge facing businesses is how to transform the large data/big volume of data into insights and action plans that would translate into increased performance in terms of increased energy efficiency or power reliability.

A solution to this dilemma facing businesses that do not know how to process big energy data, may lie in energy management software. Energy management software?s have the capability to analyse energy consumption for, electricity, gas, water, heat, renewables and oil. They enable users to track consumption for different sources so that consumers are able to identify areas of inefficiency and where they can reduce energy consumption, Energy software also helps in analytics and reporting. The analytics and reporting features that come with energy software are usually able to:

? Generate charts and graphs ? some software?s give you an option to select from different graphs

? Do graphical comparisons e.g. generate graphs of the seasonal average for the same season and day type

? Generate reports that are highly customisable

While choosing from the wide range of software available, it is important for businesses to consider software that has the capacity to support their data volume, software that can support the frequency with which their data is captured and support the data accuracy or reliability.

Energy software alone may not make the magic happen. Businesses may need to invest in trained human resources in order to realise the best value from their big energy data. Experts in energy management would then apply human expertise to leverage the data and analyse it with proficiency to make it meaningful to one?s business.

Check our similar posts

Article 8 of the EU Energy Efficiency Directive ? Orientation

Following in-depth discussion of the UK?s ESOS response, we decided to backtrack to the source, especially since every EU member is facing similar challenges. The core purpose of the directive is to place a pair of obligations on member states. These are

  1. To promote the availability of energy audits among final customers in all sectors, and;
  2. To ensure that enterprises that are not SMEs carry out energy audits at least every four years.

Given the ability for business to look twice at every piece of legislation it considers unproductive, the Brussels legislators took care to define what constitutes an enterprise larger than an SME.

Definition of a Large Undertaking

A large undertaking meets one or both of the following conditions:

  1. It employs 250 or more people
  2. Its annual turnover is more than ?50 million and its balance sheet total exceeds ?43 million

Rules for Energy Audits

If accredited / qualified in-house specialists are unavailable then independent experts should supervise audits. The talent shortage seems common to many EU businesses. In hindsight, the Union could have ramped up slower, especially since the first compliance date of 5 December 2015 does not leave much swing room.

ecoVaro doubts there was a viable alternative, given the urgent imperative to beat back the scourge of carbon that is threatening the viability of our planet. The legislators must have been of a similar mind when laying down the guidelines. Witness for example the requirement that penalties be ?effective, proportionate and dissuasive?.

In order to be compliant, an energy audit must

  1. Be based on twelve months of verifiable data that is
    • over a continuous period beginning no more than 24 months before the beginning of the energy audit, and;
    • identifies energy saving opportunities including paths to their achievement
  2. Analyse the participant’s energy consumption and energy efficiency
  3. Have not been used as the basis for an energy audit in a previous compliance period

Measurement of current status and progress tracing are at the core of energy saving and good governance generally. EcoVaro has a powerhouse of software tools available on the cloud to help project teams save time and money.

How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Spend more to reduce costs?

It is becoming increasingly important to not to analyse energy consumption for all utility types, be it electricity, gas, water, heat, renewables, oil etc. The bottom line is both operational efficiency and utility costs monitoring. In the long run, these are management strategies designed to drive energy costs downwards as a continuous improvement cycle and as a measure of reducing carbon emissions.

It is also getting increasingly easier for organisations reduce energy use and achieve this goal using technology without having to “remember” to do it yourself. Organisations can never go wrong by investing in energy management software. There are varied software options to choose from depending on the organisational objective.
Some of the energy management objectives that organisations may need to meet are:

? Establishing baseline energy use

? Carrying out Energy audits

? Monitoring and measuring energy performance against the energy policies of an organisation and objectives

? Achieving energy certification
Energy management software?s come in handy when an organization wishes to achieve either of the above objectives.

Use of energy management software?s also assists organisations in measurement and verification of energy consumption as well as Monitoring and Targeting. Measurement and verification is where a company quantifies energy consumption beforehand (baseline energy use) and after energy consumption measurements are implemented in order to verify and report on the level of savings actually achieved.

Organisations that wish to verify the energy savings achieved by building retrofits can use energy management software?s. This is an important objective for companies that wish to either satisfy internal financial accounting and reporting requirements, or to meet the terms of third-party contracts for project implementation and management. Monitoring and targeting is also made easier by use of software. This is critical as a management technique, regardless of whether an organisation has specific facility retrofits in order to keep operations efficient and to monitor utility costs.
Overall, an investment in energy management software, is worthwhile in the achievement of management strategies designed to drive energy costs downwards as a continuous improvement cycle.

Ready to work with Denizon?