Big Energy Data Management

Recent times have seen the advent of cloud based services and solutions where energy data is being stored in the cloud and being accessed from anywhere, anytime through remote mobile devices. This has been made possible by web-based systems that can usually bring real-time meter-data into clear view allowing for proactive business and facility management decisions. Some web based systems may even support multi utility metering points and come in handy for businesses operating multiple sites.

Whereas all this has been made possible by increased use of smart devices/ intelligent energy devices that capture data at more regular intervals; the challenge facing businesses is how to transform the large data/big volume of data into insights and action plans that would translate into increased performance in terms of increased energy efficiency or power reliability.

A solution to this dilemma facing businesses that do not know how to process big energy data, may lie in energy management software. Energy management software?s have the capability to analyse energy consumption for, electricity, gas, water, heat, renewables and oil. They enable users to track consumption for different sources so that consumers are able to identify areas of inefficiency and where they can reduce energy consumption, Energy software also helps in analytics and reporting. The analytics and reporting features that come with energy software are usually able to:

? Generate charts and graphs ? some software?s give you an option to select from different graphs

? Do graphical comparisons e.g. generate graphs of the seasonal average for the same season and day type

? Generate reports that are highly customisable

While choosing from the wide range of software available, it is important for businesses to consider software that has the capacity to support their data volume, software that can support the frequency with which their data is captured and support the data accuracy or reliability.

Energy software alone may not make the magic happen. Businesses may need to invest in trained human resources in order to realise the best value from their big energy data. Experts in energy management would then apply human expertise to leverage the data and analyse it with proficiency to make it meaningful to one?s business.

Check our similar posts

Energy Savings Opportunity Scheme (ESOS): An Overview

Energy management is crucial to most businesses in the UK. This is primarily because energy usage substantially affects all organizations, whether large or small. The good news is that, energy costs can be controlled through improved energy efficiency. And this is exactly why Energy Savings Opportunity Scheme (ESOS) came into being ? to promote competitiveness among businesses.

Energy Savings Opportunity Scheme is the realisation of the UK Government’s ambition towards achieving the maximum potential of cost-effective energy in the economy. ESOS aims to stimulate innovation and growth, cut emissions and support a sustainable energy system.

ESOS at a Glance – Legal Perspective

The EU Energy Efficiency Directive took a major step forward on November 14, 2012 and headed towards establishing a framework to promote energy efficiency across various economic sectors. To interpret Article 8 of the Directive, the government has given birth to ESOS; requiring large enterprises to undergo mandatory energy audits and energy management systems by December 5, 2015 and at least every 4 years thereafter.

Large enterprises include UK companies that have more than 250 employees or those businesses whose annual turnover exceeds ?50 million and whose statement of financial position totals more than ?43 million. With this, over 7000 of the biggest companies in Britain will need to comply with ESOS as an approach to review their total energy use in buildings, business operations, transport and industrial processes.

Generally, ESOS is both an obligation and an opportunity. It is an obligation for the indicated target companies since they need to submit to additional regimes; focus on audit evidences; act in accordance to group structures and compliance; and observe limited penalties and note retention periods. Moreover, it is also an opportunity for companies to strive for more savings on energy projects; attempt to standardise their potential market; and effectively lower debt and legal costs.

ESOS Audits ? Looking Beyond

According to the Department of Energy and Climate Change (DECC), average first audit costs would be estimated at about ?17,000 and subsequent ones at around ?10,000. As expected, these audits will result in energy saving recommendations, of which companies need not proceed for a follow up; and substantially improve businesses in their energy management issues. DECC further states that every business that complies with ESOS could save an average of ?56,400 each year from an initial investment of ?17,000 only.

Currently, up to 6,000 UK businesses are already subject to existing CRC Carbon Reduction Scheme, Mandatory Carbon Reporting, Climate Change Levy and other compliance. This signifies that ESOS may overlap with prevailing energy efficiency legislation and may put additional pressure on energy administration. While this is true, however, ESOS holds extensive benefits. Although the scheme can be viewed as another costly compliance to environmental standards, ESOS goes straight to the bottom line and provides the organisation with competitive advantage. If large businesses act now and comply with it, they will be able to enjoy maximised payback in the long run.

Indeed, Energy Savings Opportunity Scheme is already here. It is mandatory with minimal investment. And all you have to do is act quickly, implement new improvements and earn more.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Sub-Metering did for Nissan in Tennessee

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ?We’ve already squeezed the lemon dry,? they seemed to say. ?What makes you think there?s more to come??

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ?The only disadvantage of sub-metering is that now we can’t imagine doing without it.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Risk Assessment

Risk assessment is a vital component in BC (Business Continuity) planning. Through risk assessment, your company may determine what vulnerabilities your assets possess. Not only that, you’ll also be able to quantify the loss of value of each asset against a specific threat. That way, you can rank them so that assets that are most likely to cripple your business when say a specific disaster strikes can be given top priority.

However, a poorly implemented risk assessment may also cost you unnecessary expenditures. Many risk assessors are too enthusiastic in pointing out risks that, at the end of the assessment, they tend to over-appraise even those having practically zero probability of ever occurring.

We can assure you of a realistic assessment of your assets’ risks and propose cost-effective countermeasures. These are the things we can do:

  • Identify your unsafe practices and propose the best alternatives.
  • Perform qualitative risk assessment if you want fast results and lesser interruptions on your operations.
  • Perform quantitative risk assessment if you want the most accurate depiction of your risks and the corresponding justifiable costs of each.
  • Conduct frequency and consequence analysis to identify unforeseen harmful events and determine their effects to various components of your organisation and its surroundings.

We can also assist you with the following:

Ready to work with Denizon?