What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Energy Cooperation Mechanisms in the EU

While the original mission of the European Union was to bring countries together to prevent future wars, this has spun out into a variety of other cooperative mechanisms its founders may never have dreamed of. Take energy for example, where the European Energy Directive puts energy cooperation mechanisms in place to help member states achieve the collective goal.

This inter-connectivity is essential because countries have different opportunities. For example, some may easily meet their renewable targets with an abundance of suitable rivers, while others may have a more regular supply of sunshine. To capitalise on these opportunities the EU created an internal energy market to make it easier for countries to work together and achieve their goals in cost-effective ways. The three major mechanisms are

  • Joint Projects
  • Statistical Transfers
  • Joint Support Schemes

Joint Projects

The simplest form is where two member states co-fund a power generation, heating or cooling scheme and share the benefits. This could be anything from a hydro project on their common border to co-developing bio-fuel technology. They do not necessarily share the benefits, but they do share the renewable energy credits that flow from it.

An EU country may also enter into a joint project with a non-EU nation, and claim a portion of the credit, provided the project generates electricity and this physically flows into the union.

Statistical Transfers

A statistical transfer occurs when one member state has an abundance of renewable energy opportunities such that it can readily meet its targets, and has surplus credits it wishes to exchange for cash. It ?sells? these through the EU accounting system to a country willing to pay for the assistance.

This aspect of the cooperative mechanism provides an incentive for member states to exceed their targets. It also controls costs, because the receiver has the opportunity to avoid more expensive capital outlays.

Joint Support Schemes

In the case of joint support schemes, two or more member countries combine efforts to encourage renewable energy / heating / cooling systems in their respective territories. This concept is not yet fully explored. It might for example include common feed-in tariffs / premiums or common certificate trading and quota systems.

Conclusion

A common thread runs through these three cooperative mechanisms and there are close interlinks. The question in ecoVaro?s mind is the extent to which the system will evolve from statistical support systems, towards full open engagement.

Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Could Kanban Be?Best for Knowledge Workers?

Knowledge Workers include academics, accountants, architects, doctors, engineers, lawyers, software engineers, scientists and anybody else whose job it is to think for a living. They are usually independent-minded people who do not appreciate project managers dishing out detailed orders. Kanban project management resolves this by letting them choose the next task themselves.

The word ?Kanban? comes from a Japanese word meaning ?billboard? or ?signboard?. Before going into more detail how this works let’s first examine how Japanese beliefs of collaboration, communication, courage, focus on value, respect for people and a holistic approach to change fit into the picture.

The Four Spokes Leading to the Kanban Hub

  1. Visualise the Workflow ?You cannot improve what you cannot see. The first step involves team members reducing a project to individual stages and posting these on a noticeboard.
  2. Create Batches ? These stages are further reduced to individual tasks or batches that are achievable within a working day or shift. More is achievable when we do not have to pick up where we left off the previous day.
  3. Choose a Leader the Team Respects – Without leadership, a group of people produces chaotic results. To replace this with significant value they need a leader, and especially a leader they can willingly follow.
  4. Learn and Improve Constantly ? Kaizen or continuous improvement underpins the Japanese business model, and respects that achievement is a step along the road, and not fulfilment.

The Kanban Method in Practice

Every Kanban project begins with an existing process the participants accept will benefit from continuous change. These adjustments should be incremental, not radical step-changes to avoid disrupting the stakeholders and the process. The focus is on where the greatest benefits are possible.

Anybody in the team is free to pull any batch from the queue and work on it in the spirit of collaboration and cooperation. That they do so, should not make any waves in a culture of respect for people and a holistic approach to working together. All it needs is the courage to step out of line and dream what is possible.

The Kanban Project Method ? Conclusions and Thoughts

Every engine needs some sort of fuel to make it go. The Kanban project management method needs collaboration, communication, courage, focus on value, respect for people and a holistic approach to work. This runs counter to traditional western hierarchies and probably limits its usefulness in the West.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?