UK Government Updates ESOS Guidelines

Britain?s Environment Agency has produced an update to the ESOS guidelines previously published by the Department of Energy and Climate Change. Fortunately for businesses much of it has remained the same. Hence it is only necessary to highlight the changes here.

  1. Participants in joint ventures without a clear majority must assess themselves individually against criteria for participation, and run their own ESOS programs if they comply.
  2. If a party supplying energy to assets held in trust qualifies for ESOS then these assets must be included in its program.
  3. Total energy consumption applies only to assets held on both the 31 December 2014 and 5 December 2015 peg points. This is relevant to the construction industry where sites may exchange hands between the two dates. The definition of ?held? includes borrowed, leased, rented and used.
  4. Energy consumption while travelling by plane or ship is only relevant if either (or both) start and end-points are in the UK. Foreign travel may be voluntarily included at company discretion. The guidelines are silent regarding double counting when travelling to fellow EU states.
  5. The choice of sites to sample is at the discretion of the company and lead assessor. The findings of these audits must be applied across the board, and ?robust explanations? provided in the evidence pack for selection of specific sites. This is a departure from traditional emphasis on random.

The Environment Agency has provided the following checklist of what to keep in the evidence pack

  1. Contact details of participating and responsible undertakings
  2. Details of directors or equivalents who reviewed the assessment
  3. Written confirmation of this by these persons
  4. Contact details of lead assessor and the register they appear on
  5. Written confirmation by the assessor they signed the ESOS off
  6. Calculation of total energy consumption
  7. List of identified areas of significant consumption
  8. Details of audits and methodologies used
  9. Details of energy saving opportunities identified
  10. Details of methods used to address these opportunities / certificates
  11. Contracts covering aggregation or release of group members
  12. If less than twelve months of data used why this was so
  13. Justification for using this lesser time frame
  14. Reasons for including unverifiable data in assessments
  15. Methodology used for arriving at estimates applied
  16. If applicable, why the lead assessor overlooked a consumption profile

Check out: Ecovaro ? energy data analytics specialist 

Check our similar posts

Without Desktop Virtualisation, you can’t attain True Business Continuity

Even if you’ve invested on virtualisation, off-site backup, redundancy, data replication, and other related technologies, I?m willing to bet your BC/DR program still lacks an important ingredient. I bet you’ve forgotten about your end users and their desktops.

Picture this. A major disaster strikes your city and brings your entire main site down. No problem. You’ve got all your data backed up on another site. You just need to connect to it and voila! you’ll be back up and running in no time.

Really?

Do you have PCs ready for your employees to use? Do those machines already have the necessary applications for working on your data? If you still have to install them, then that’s going to take a lot of precious time. When your users get a hold of those machines, will they be facing exactly the same interface that they’ve been used to?

If not, more time will be wasted as they try to familiarise themselves. By the time you’re able to declare ?business as usual?, you’ll have lost customer confidence (or even customers themselves), missed business opportunities, and dropped potential earnings.

That’s not going to happen with desktop virtualisation.

The beauty of?virtualisation

Virtualisation in general is a vital component in modern Business Continuity/Disaster Recovery strategies. For instance, by creating multiple copies of virtualised disks and implementing disk redundancy, your operations can continue even if a disk breaks down. Better yet, if you put copies on separate physical servers, then you can likewise continue even if a physical server breaks down.

You can take an even greater step by placing copies of those disks on an entirely separate geographical location so that if a disaster brings your entire main site down, you can still gain access to your data from the other site.

Because you’re essentially just dealing with files and not physical hardware, virtualisation makes the implementation of redundancy less costly, less tedious, greener, and more effective.

But virtualisation, when used for BC/DR, is mostly focused on the server side. As we’ve pointed out earlier in the article, server side BC/DR efforts are not enough. A significant share of business operations are also dependent on the client side.

Desktop virtualisation (DV) is very similar to server virtualisation. It comes with nearly the same kind of benefits too. That means, a virtualised desktop can be copied just like ordinary files. If you have a copy of a desktop, then you can easily use that if the active copy is destroyed.

In fact, if the PC on which the desktop is running becomes incapacitated, you can simply move to another machine, stream or install a copy of the virtualised desktop there, and get back into the action right away. If all your PCs are incapacitated after a disaster, rapid provisioning of your desktops will keep customers and stakeholders from waiting.

In addition to that, DV will enable your user interface to look like the one you had on your previous PC. This particular feature is actually very important to end users. You see, users normally have their own way of organising things on their desktops. The moment you put them in front of a desktop not their own, even if it has the same OS and the same set of applications, they?ll feel disoriented and won’t be able to perform optimally.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Proactive Preventative Maintenance: How IoT and Field Service Management Software Helps

FieldElite, our mobile workforce management software, has been key to several industries? return on investment. Whether it’s for plumbing, electrical, property management, cleaning, and maintenance, FieldElite has provided data centralisation for efficient management of these business activities. 

Field service management software is important to utilise current workload, and also helps resolve future issues. We’re talking about a proactive approach to preventative maintenance. 

How exactly do field service managements help in preventative maintenance? 

The answer lies in how field service management is interlinked with IoT in predicting future jobs for the mobile service industry.  

What is IoT? 

Simply put, the Internet of Things (IoT) is a network of devices and sensors connected to the internet. These ?things? (e.g. your smartphone or smartwatch) enable data to be sent and be received without human intervention.

Fundamentally, IoT is about devices being connected to the internet to allow remote monitoring

For many years now, remote monitoring for IT infrastructure has been widely used. 

What’s new that we’re experiencing right now is even the smallest devices ? individual light bulbs and sensors ? can have a network and internet connection, allowing entire systems to be monitored in great detail. 

Implementing IoT and accessing data can be challenging for most service organisations. However, when combined with predictive analytics and field management software, it can have a huge potential impact on individual businesses and the service industry as a whole. 

What is Preventative Maintenance? 

Preventive maintenance refers to regular, routine maintenance to help keep equipment up and running, preventing any unplanned downtime and expensive costs from unanticipated equipment failure. 

The goal of preventative maintenance is to decrease the likelihood of a machine or an equipment’s failure by performing regular maintenance. 

Preventative management can be very complex, especially for companies with a fleet of equipment or customers. It requires careful planning and scheduling of maintenance on equipment before there is an actual problem. 

Also, preventive maintenance is evolving. It’s not just about scheduling the same work every month to prevent failure anymore. Today, working smarter with better information about equipment conditions is critical to ensure maintenance is effective.

That’s where IoT and field service management software, like FieldElite, comes in. Together, they organise and carry out preventive maintenance needs for service industries. 

How IoT and FieldElite Helps in Preventative Maintenance

With FieldElite and IoT technology, you get the best in preventive maintenance management.

  • Evaluation of equipment or machines ? the condition of machines or equipment is evaluated in order to predict when maintenance needs to be performed. 
  • Automated work order ? automated time-based work order creation
  • Full condition-based plans allows you to do the following:
    • Right-size your maintenance work
    • Lower costs
    • Extend the life of your or customer?s assets 
  • Quicker reporting ? due to its efficient and automated nature, IoT and field service management software can reduce a field technician?s average report time from two weeks to two days, therefore boosting your cash flow! 

That’s the most important result a mobile service management software can produce (in connection with preventative maintenance). It’s cost-saving! This can be achieved over routine or time-based preventive maintenance, as tasks are only performed when they are needed. 

The Internet of Things (IoT) and field service management software is changing field service as we know it. 

Companies who adapt and utilise these technologies will benefit the most from the resulting competitive advantage of preventative maintenance. 

Start elevating every field service experience now!  

Our field service software, FieldElite helps you: 
  • Accepts jobs in the field
  • Automate appointment scheduling
  • Manage scheduled jobs 
  • Get real-time visibility into all operations
  • Have a clear and easy viewing of job locations 
  • Resolve field service calls faster 
  • Enable mobile workers to get the job done right
  • Keep customers updated at every step 
  • Create quotations and accept payments 
  • Analyse efficient reports from field technicians
  • Helps in proper preventative maintenance management. 

Learn how to schedule jobs to field workers with ease. Check out FieldElite

CONTACT US

  • We seek to understand your technology and business challenges
  • We tailor a demonstration of our platform and solutions to align to your specific needs
  • We answer any questions and make sensible recommendations
  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Energy Cooperation Mechanisms in the EU

While the original mission of the European Union was to bring countries together to prevent future wars, this has spun out into a variety of other cooperative mechanisms its founders may never have dreamed of. Take energy for example, where the European Energy Directive puts energy cooperation mechanisms in place to help member states achieve the collective goal.

This inter-connectivity is essential because countries have different opportunities. For example, some may easily meet their renewable targets with an abundance of suitable rivers, while others may have a more regular supply of sunshine. To capitalise on these opportunities the EU created an internal energy market to make it easier for countries to work together and achieve their goals in cost-effective ways. The three major mechanisms are

  • Joint Projects
  • Statistical Transfers
  • Joint Support Schemes

Joint Projects

The simplest form is where two member states co-fund a power generation, heating or cooling scheme and share the benefits. This could be anything from a hydro project on their common border to co-developing bio-fuel technology. They do not necessarily share the benefits, but they do share the renewable energy credits that flow from it.

An EU country may also enter into a joint project with a non-EU nation, and claim a portion of the credit, provided the project generates electricity and this physically flows into the union.

Statistical Transfers

A statistical transfer occurs when one member state has an abundance of renewable energy opportunities such that it can readily meet its targets, and has surplus credits it wishes to exchange for cash. It ?sells? these through the EU accounting system to a country willing to pay for the assistance.

This aspect of the cooperative mechanism provides an incentive for member states to exceed their targets. It also controls costs, because the receiver has the opportunity to avoid more expensive capital outlays.

Joint Support Schemes

In the case of joint support schemes, two or more member countries combine efforts to encourage renewable energy / heating / cooling systems in their respective territories. This concept is not yet fully explored. It might for example include common feed-in tariffs / premiums or common certificate trading and quota systems.

Conclusion

A common thread runs through these three cooperative mechanisms and there are close interlinks. The question in ecoVaro?s mind is the extent to which the system will evolve from statistical support systems, towards full open engagement.

Ready to work with Denizon?