Telemetry and the Survival of the Human Species

Without moisture, plants die. Without fodder, the animal food chain collapses. This is why climate change is the greatest threat humankind faces. Crop management needs timely information regarding ambient conditions, and also in the soil itself. In dry areas, online knowledge of trends in rainfall, sunlight, wind speed, leaf moisture, air temperature, relative humidity and solar radiation are indicators of soil stress that can be deadly for plants, and everything that relies on them.

As climate change bites, the need to find solutions accelerates. Drones swoop across to monitor ambient conditions, while probes sunk into plants and the earth in which they grow transmit information to big data repositories for feedback to administrators. In Australia, a remarkable cattle farmer is applying the same approach to his herds.

Nuffield scholar Rob Cook has always been on the edgy side of things. He lost his mobility in a helicopter crash in 2008 patrolling farmland but that has not deterred him. If anything, it has freed his mind to explore the potential that telemetry offers farmers in Australia. He shared this potential with the young beef producers in Roma Australia recently, and here is a summary what he said.

Being wheelchair bound he had to shift from herding with cattle dogs to a more scientific approach. He bought a farm 230 miles / 370 kilometres inland from Brisbane in a warm, temperate climate with significant rainfall even in the driest months. He uses observant software that reports on critical issues like water levels indicating animal consumption, and supplementary water flows from a central irrigation channel.

He also monitors fodder sources for dryer months, and moisture levels in food stocks. Rob is committed to making every blade of grass count. ?We even have the ability to take a photo of the cattle when they are taking a drink of water,? he explains, and that provides valuable information regarding tick and fly infestation and overall condition.

None of this would be possible for Rob Cook without telemetry, which is the process of collecting data at remote points and transmitting it to receiving equipment for analysis. Independent farmers do not have equipment to fund these analytic resources on their own, and use big data resources in a cloud to obtain reports. ecoVaro is on top of current trends. Please speak to us when you need independent advice.

?

Check our similar posts

Benefits of Integrating IoT and Field Service

Owing to the complexity of its definition, many people loosely use the phrase Internet of Things (IoT) without having a solid grasp of its true meaning. A majority in this category take IoT to be nothing more than the automation of home gadgets, where the internet is used to interconnect computing components embedded in everyday devices.

Granted, the whole idea of IoT got its roots from the home setting. Nevertheless, IoT has outgrown that spectrum and has since penetrated into almost every area of business and industry. By employing IoT, you can literally take full control of everything in your business using a single device. From assigning tasks to monitoring security, managing bills to tracking time, IoT has revolutionized the way business is done.

Interestingly, not so long ago, most technology experts limited their forecasts to machine-to-machine (M2M) integration and Augmented Reality (AR), which also, admittedly, hit the technology industry with an admirable suave. Back then, it could have been laughable for anyone to have suggested that IoT would be so commanding in almost every industry, including real estate, medicine, automobile, and more.

It’s not for nothing, therefore, that the field service industry has also embraced IoT, integrating it in the daily running of business activities, including tracking machine diagnostics, detecting breakdowns, and assigning field engineers to attend to customer needs.

How the Field Service Industry is Benefiting from IoT

Machine uptime has remained an ongoing concern for many customers. In the traditional approach, whenever a machine breaks down, the customer alerts the service provider and then the field service manager checks to see if there is any field engineer available for a new task. Once an engineer has been identified, he?s then dispatched to the site. This worked, but it resulted in an extended machine downtime, a terrible experience for customers.

Thanks to IoT, things are now happening differently.

IoT is now integrating machines to a central communications centre, where all alerts and status updates are sent. The notifications are instant. The field service manager, therefore, gets to learn of the status of machines at the exact time of status change. An engineer who?s not engaged would then be immediately assigned to undertake any needed servicing or repair.

By employing IoT, the service provider receives timely reports relating to diagnostics, machine uptime, part failures, and more. The field manager can, as a result, foretell and forestall any possible downtime.

How has this been helpful?

Before giving a definite answer to that question, it’s crucial to note that more than half of all field service organizations now employ IoT in their Asset Management Systems and Field Service Management. And to answer the question, all the organizations that have the two systems integrated using IoT experience twice as much efficiency as those that don’t, states an Aberdeen Group report. As you already know, improved efficiency results in a corresponding upshot in customer satisfaction.

Apps Making a Difference in IoT-Field Service

The integration of IoT into almost every aspect of business prompted the design and development of different applications to link computing devices. Since the advent of IoT, the software development for the technology has come of age. Powerful and lightweight apps that don simple yet beautiful user interfaces are now readily available at affordable price tags.

A good example of such an App is ecoVaro by Denizon.

ecoVaro not only helps businesses to monitor energy and other relevant environmental data such as Electricity, Gas, Water, Oil, Carbon, Temperature, Humidity, Solar Power, and more, but also provides analytics and comprehensive yet easy to understand reports. The data received from devices such as meters is converted into useful information that’s then presented in figures and graphs, thus allowing you to make decisions based on laid down controls.

The focus of the app is to instantly alert service engineers to go on site to fix issues.

With ecoVaro, field service engineers no longer have to return to the office to get new instructions. Also, customers don’t have to manually fire alerts to the service provider whenever something isn’t working correctly. By employing the latest in IoT, ecoVaro sends notifications to field service managers and engineers about respective customers that need support.

How ecoVaro Helps

Best-in-class companies aren’t ready to compromise on customer satisfaction. Therefore, every available avenue is used to address customer concerns with the deserved agility. By using IoT, ecoVaro makes it possible for field service providers to foresee and foreclose any possible breakdowns.

The inter-connectivity among the devices and the central communications centre results in increased revenue and improved interactivity between the system and the field engineers. This results in greater efficiency and lower downtime, which translates into improved productivity, accountability, and customer satisfaction, as well as creating a platform for a possible expansion of your customer base.

ecoVaro isn’t just about failed machines and fixes. It also provides diagnostics about connected systems and devices. With this, the diagnostics centre receives system reports in a timely manner, allowing for ease of planning and despatch of field officers where necessary.

Clearly, but using the right application, IoT can transform your business into an excellently performing field service company.

Which Services to Share?

It often makes sense to pool resources. Farmers have been doing so for decades by collectively owning expensive combine harvesters. France, Germany, the United Kingdom and Spain have successfully pooled their manufacturing power to take on Boeing with their Airbus. But does this mean that shared services are right in every situation?

The Main Reasons for Sharing

The primary argument is economies of scale. If the Airbus partners each made 25% of the engines their production lines would be shorter and they would collectively need more technicians and tools. The second line of reasoning is that shared processes are more efficient, because there are greater opportunities for standardisation.

Is This the Same as Outsourcing?

Definitely not! If France, Germany, the United Kingdom and Spain has decided to form a collective airline and asked Boeing to build their fleet of aircraft, then they would have outsourced airplane manufacture and lost a strategic industry. This is where the bigger picture comes into play.

The Downside of Sharing

Centralising activities can cause havoc with workflow, and implode decentralised structures that have evolved over time. The Airbus technology called for creative ways to move aircraft fuselages around. In the case of farmers, they had to learn to be patient and accept that they would not always harvest at the optimum time.

Things Best Not Shared

Core business is what brings in the money, and this should be tailor-made to its market. It is also what keeps the company afloat and therefore best kept on board. The core business of the French, German, United Kingdom and Spanish civilian aircraft industry is transporting passengers. This is why they are able to share an aircraft supply chain that spun off into a commercial success story.

Things Best Shared

It follows that activities that are neither core nor place bound – and can therefore happen anywhere ? are the best targets for sharing. Anything processed on a computer can be processed on a remote computer. This is why automated accounting, stock control and human resources are the perfect services to share.

So Case Closed Then?

No, not quite. ?Technology has yet to overtake our humanity, our desire to feel part of the process and our need to feel valued. When an employee, supplier or customer has a problem with our administration it’s just not good enough to abdicate and say ?Oh, you have to speak to Dublin, they do it there?.

Call centres are a good example of abdication from stakeholder care. To an extent, these have ?confiscated? the right of customers to speak to speak directly to their providers. This has cost businesses more customers that they may wish to measure. Sharing services is not about relinquishing the duty to remain in touch. It is simply a more efficient way of managing routine matters.

New Focus on Monitoring Soil

There is nothing new about monitoring soil in arid conditions. South Africa and Israel have been doing it for decades. However climate change has increased its urgency as the world comes to terms with pressure on the food chain. Denizon decided to explore trends at the macro first world level and the micro third world one.

In America, the Coordinated National Soil Moisture Network is going ahead with plans to create a database of federal and state monitoring networks and numerical modelling techniques, with an eye on soil-moisture database integration. This is a component of the National Drought Resilience Partnership that slots into Barrack Obama?s Climate Action Plan.

This far-reaching program reaches into every corner of American life to address the twin scourges of droughts and inundation, and the agency director has called it ?probably ?… one of the most innovative inter-agency tools on the planet?. The pilot project involving remote moisture sensing and satellite observation targets Oklahoma, North Texas and surrounding areas.

Africa has similar needs but lacks America?s financial muscle. Princeton University ecohydrologist Kelly Caylor is bridging the gap in Kenya and Zambia by using cell phone technology to transmit ecodata collected by low-cost ?pulsepods?.

He deploys the pods about the size of smoke alarms to measure plants and their environment.?Aspects include soil moisture to estimate how much water they are using, and sunlight to approximate the rate of photosynthesis. Each pod holds seven to eight sensors, can operate on or above the ground, and transmits the data via sms.

While the system is working well at academic level, there is more to do before the information is useful to subsistence rural farmers living from hand to mouth. The raw data stream requires interpretation and the analysis must come through trusted channels most likely to be the government and tribal chiefs. Kelly Caylor cites the example of a sick child. The temperature reading has no use until a trusted source interprets it.

He has a vision of climate-smart agriculture where tradition gives way to global warming. He involves local farmers in his research by enrolling them when he places pods, and asking them to sms weekly weather reports to him that he correlates with the sensor data. As trust builds, he hopes to help them choose more climate-friendly crops and learn how to reallocate labour as seasons change.

Ready to work with Denizon?