Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Month End Accounting the way it should Be Today

Month end accounting has always been a business critical exercise. Without the balance sheet, income statement, and other financial reports this exercise ultimately produces, management could not make informed decisions to keep the company in the right direction and at the ideal operational speed.

Now, in order to maintain optimal business velocity, month end activities have to be carried out as swiftly and as accurately as possible. Delays will only inhibit managers from reacting and effecting necessary adjustments in time. Inaccurate information, on the other hand, obviously lead to bad decisions.

But that’s not all. Never has the month end close been as demanding as it is today. Regulations like the Sarbanes-Oxley Act, Solvency II, Dodd-Frank Act, and others, which call for more stringent controls and more robust risk management practices, are now forcing companies to find better ways to face the end of the month.

Sticking to old month-end practices while striving to achieve regulation compliance can either cost a company more (if they add manpower) or simply bog it down (if they don’t). Among the worst of these practices is the use of spreadsheets.

These User Developed Applications (UDAs) are very susceptible to errors. (See spreadsheet risks)

What’s more, consolidating data from spreadsheets as well as carrying out reconciliations on them is very time consuming. These activities usually require data from outside sources – i.e. a workstation in a different department, building, or (in the case of really large corporations) geographical locations.

Furthermore, if one of these sources fail, the financial reports won’t be complete. This is not a far-fetched scenario, considering that spreadsheet storage and backup is typically carried out by the average end user. This leaves the spreadsheet data vulnerable to hard disk crashes, virus attacks, and unexpected disasters.

Thus, in order to produce accurate financial reports on time all the time, you need a financial/IT solution that offers optimal provisions for risk management, collaboration, backup, and business continuity. Learn about server-based solutions and discover a better way to carry out month end accounting.

Telemetry and the Survival of the Human Species

Without moisture, plants die. Without fodder, the animal food chain collapses. This is why climate change is the greatest threat humankind faces. Crop management needs timely information regarding ambient conditions, and also in the soil itself. In dry areas, online knowledge of trends in rainfall, sunlight, wind speed, leaf moisture, air temperature, relative humidity and solar radiation are indicators of soil stress that can be deadly for plants, and everything that relies on them.

As climate change bites, the need to find solutions accelerates. Drones swoop across to monitor ambient conditions, while probes sunk into plants and the earth in which they grow transmit information to big data repositories for feedback to administrators. In Australia, a remarkable cattle farmer is applying the same approach to his herds.

Nuffield scholar Rob Cook has always been on the edgy side of things. He lost his mobility in a helicopter crash in 2008 patrolling farmland but that has not deterred him. If anything, it has freed his mind to explore the potential that telemetry offers farmers in Australia. He shared this potential with the young beef producers in Roma Australia recently, and here is a summary what he said.

Being wheelchair bound he had to shift from herding with cattle dogs to a more scientific approach. He bought a farm 230 miles / 370 kilometres inland from Brisbane in a warm, temperate climate with significant rainfall even in the driest months. He uses observant software that reports on critical issues like water levels indicating animal consumption, and supplementary water flows from a central irrigation channel.

He also monitors fodder sources for dryer months, and moisture levels in food stocks. Rob is committed to making every blade of grass count. ?We even have the ability to take a photo of the cattle when they are taking a drink of water,? he explains, and that provides valuable information regarding tick and fly infestation and overall condition.

None of this would be possible for Rob Cook without telemetry, which is the process of collecting data at remote points and transmitting it to receiving equipment for analysis. Independent farmers do not have equipment to fund these analytic resources on their own, and use big data resources in a cloud to obtain reports. ecoVaro is on top of current trends. Please speak to us when you need independent advice.

?

2015 ESOS Guidelines Chapter 2 – Deadlines and Status Changes

The ESOS process is deadline driven and meeting key dates is a non-negotiable. The penalties for not complying / providing false or misleading information are ?50,000 each. Simply not maintaining adequate records could cost you ?5,000. The carrot on the end of the stick is the financial benefits you stand to gain.

Qualifying for inclusion under the ESOS umbrella depends on the status of your company in terms of employee numbers, turnover and balance sheet on 31 December 2014. Regardless of whether you meet the 2014 threshold or not, you must reconsider your situation on 31 December 2018, 2022 and 2026.

Compliance Period Qualification Date Compliance Period Compliance Date
1 31 December 2014 From 17 July 2014* to 5 December 2015 5 December 2015
2 31 December 2018 From 6 December 2015 to 5 December 2019 5 December 2019
3 31 December 2022 From 6 December 2019 to 5 December 2023 5 December 2023
4 31 December 2026 From 6 December 2023 to 5 December 2027 5 December 2027

Notes:

1. The first compliance period begins on the date the regulations became effective

2. Energy audits from 6 December 2011 onward may go towards the first compliance report

Changes in Organisation Status

If your organisation status changes after a qualification date when you met compliance thresholds, you are still bound to complete your ESOS assessment for that compliance period. This is regardless of any change in size or structure. Your qualification status then remains in force until the next qualification date when you must reconsider it.

Ready to work with Denizon?