Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Energy Cooperation Mechanisms in the EU

While the original mission of the European Union was to bring countries together to prevent future wars, this has spun out into a variety of other cooperative mechanisms its founders may never have dreamed of. Take energy for example, where the European Energy Directive puts energy cooperation mechanisms in place to help member states achieve the collective goal.

This inter-connectivity is essential because countries have different opportunities. For example, some may easily meet their renewable targets with an abundance of suitable rivers, while others may have a more regular supply of sunshine. To capitalise on these opportunities the EU created an internal energy market to make it easier for countries to work together and achieve their goals in cost-effective ways. The three major mechanisms are

  • Joint Projects
  • Statistical Transfers
  • Joint Support Schemes

Joint Projects

The simplest form is where two member states co-fund a power generation, heating or cooling scheme and share the benefits. This could be anything from a hydro project on their common border to co-developing bio-fuel technology. They do not necessarily share the benefits, but they do share the renewable energy credits that flow from it.

An EU country may also enter into a joint project with a non-EU nation, and claim a portion of the credit, provided the project generates electricity and this physically flows into the union.

Statistical Transfers

A statistical transfer occurs when one member state has an abundance of renewable energy opportunities such that it can readily meet its targets, and has surplus credits it wishes to exchange for cash. It ?sells? these through the EU accounting system to a country willing to pay for the assistance.

This aspect of the cooperative mechanism provides an incentive for member states to exceed their targets. It also controls costs, because the receiver has the opportunity to avoid more expensive capital outlays.

Joint Support Schemes

In the case of joint support schemes, two or more member countries combine efforts to encourage renewable energy / heating / cooling systems in their respective territories. This concept is not yet fully explored. It might for example include common feed-in tariffs / premiums or common certificate trading and quota systems.

Conclusion

A common thread runs through these three cooperative mechanisms and there are close interlinks. The question in ecoVaro?s mind is the extent to which the system will evolve from statistical support systems, towards full open engagement.

How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Cloud Computing Trends: Where is the Cloud Headed Next?

Cloud adoption has been quick and painless at the consumer level. For instance, everyone’s on Gmail, YouTube, Facebook and Twitter on a daily basis yet most think nothing of the fact that they’re already using cloud-based services. Small businesses have also discovered how cloud solutions have raised efficiency in the workplace up a notch or two, while also bringing about significant cost savings. Cloud applications, particularly those for communication, file sharing, office software, backup and storage, and customer management, have rapidly grown in usage among SMBs.

In the same manner, large corporations are starting to see the potential of moving some of their IT department, whether its infrastructure or network management, to the cloud. By all indications it would seem that whether we are ready for it or not, cloud computing technology is here for the long haul.

So where is the cloud headed to next? In this post we examine the trends in the world of cloud computing and what likely lies in store in the near future for cloud users.

Focus on Security

Security has always been a key concern in the cloud computing industry and this will not go away anytime soon. If anything, data security in the cloud will only get to be in the limelight even more as cloud adopters grow in number. That’s why we expect professional cloud services providers to start implementing measures that will help slowly build up confidence in cloud security.

We should soon see more advanced security techniques and protocols that would increase the overall level of privacy and protection for cloud-stored information. Tighter security for login encryptions and prevention of unauthorized access are priority although there are a lot more issues that may need to be addressed. Now it remains to be seen whether these moves are enough for corporate clients to put their full trust in the cloud. But then again, they can always find ways to stay secure while making use of cloud computing where they can, which brings us to the next cloud trend.

Hybrid Approach

Large businesses are taking a longer time to get used to and actually use cloud services, and understandably so. After all, these companies have more at stake when it comes to dealing with such valid issues as security, compliance, outages, legacy systems, and more. However, they also cannot ignore the very appealing characteristics of the cloud. For big companies that have substantial IT needs, scalability, business agility, and faster deployment are listed as the biggest draws of the cloud.

This is why analysts predict that as as these businesses look toward leveraging the benefits of the cloud while at the same time maintaining control over mission critical data and systems, the use of a hybrid approach, i.e. putting some services in a public and at the same time opting to utilize a private cloud for other applications, will see enormous growth.

Mobile Cloud Computing

The BYOD or Bring Your Own Device business policy is another emerging trend that would not have been possible if not for cloud technology. This practice involves having employees bring their mobile devices to work, allowing them to access company files, data, and applications from their personally-owned gadgets in and out of the workplace.

As with any new business practice, the concept of BYOD can be both advantageous and disadvantageous. On the one hand, some believe it helps increase employee productivity and lifts their morale, while reducing overall IT costs. On the other hand, BYOD also opens up a whole new set of problems that are quite consistent with what many businesses take issue with with cloud technology: security. Do the pros outweigh the cons or vice versa? This much isn’t clear yet but what is evident is that more cloud apps are going mobile.

Efficiency, Innovation

While cost savings has always been one benefit that cloud proponents are quick to point out, its capability to improve and streamline business processes, thereby increasing efficiency and agility within the organization, is another key opportunity that the cloud offers. This is evident when you take a look at the most commonly used cloud services: backup and archiving, business continuity, collaboration tools, and big data processing.

Moreover, the cloud is making it easier for individuals to create new products and produce new lines of business. With access to higher IT capacity at lesser cost and at faster deployment rates, businesses can scale into more innovation without having to worry about the availability of computing resources.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?