Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

How Ventura Bus Lines cleaned up its Act

Melbourne?s Ventura Bus Lines grew from a single bus in 1924 to a mega 308-vehicle fleet by the start of 2014. The family-owned provider has always been community centric; when climate-change became an issue it took quick and urgent action. As a result it now stands head and shoulders above many others. Let’s take a closer look at some of its decisions that made the difference.

The Important Things to Focus On

Ethanol Buses ? Ventura is the only Australian company that uses ethanol power produced from sugar cane for experimental public transport. It compares emissions within its fleet, and knows that these produce significantly less CO2 while also creating jobs for locals.

Electric Buses ? The company has been operating electric buses since 2009. These carry 42 seated among a total 68 passengers. The ride is smooth thanks to twin battery banks kept charged by braking and forward momentum. When required, a two-litre VW engine kicks in automatically.

Ongoing Driver Training ? Ventura provides regular retraining sessions emphasising safe, environmentally-friending operations. Drivers are able to see their fuel consumption and carbon emissions online and experiment with ways to improve these.

Bus U-Turns ? The capacity to measure throughput convinced the company to abandon the principle that buses don’t do U-Turns for safety?s sake. Road re-engineering made this possible in a busy downtown street. This reduced emissions equivalent to 4,000 cars and reduced vehicle downtime for servicing.

Increased Business – These initiatives allowed Ventura Bus Lines to improve its service as customers experience it. This led to an uptake in patronage and a corresponding downturn in the number of passenger car hours. The pleasure of travelling green no doubt contributed to this.

How Measuring Made the Difference

Ventura Bus Lines is big business. Its 308 buses operate out of 5 depots, cover 31% of the metropole, and transport close to 70,000 passengers on average daily which is no minor task. The ability to track, measure and analyse carbon emissions throughout the area has earned it compliance with National Greenhouse Energy Reporting Threshold 1 legislation.

It also uses the data to re-engineer bus routes to further reduce fuel consumption, energy consumption and operating costs. It’s amazing how measuring is affecting its bottom line, and the health of the Melbourne community at large.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Knowing the Caveats in Cloud Computing

Cloud computing has become such a buzzword in business circles today that many organisations both small and large, are quick to jump on the cloud bandwagon – sometimes a little too hastily.

Yes, the benefits of the cloud are numerous: reduced infrastructure costs, improved performance, faster time-to-market, capability to develop more applications, lower IT staff expenses; you get the picture. But contrary to what many may be expecting or have been led to believe, cloud computing is not without its share of drawbacks, especially for smaller organisations who have limited knowledge to go on with.

So before businesses move to the cloud, it pays to learn a little more about the caveats that could meet them along the way. Here are some tips to getting started with cloud computing as a small business consumer.

Know your cloud. As with anything else, knowledge is always key. Because it is a relatively new tool in IT, it’s not surprising that there is some confusion about the term cloud computing among many business owners and even CIOs. According to the document The NIST Definition of Cloud Computing, cloud computing has five essential characteristics, three basic service models (Saas, Paas and Iaas), and four deployment models (public, community, private and hybrid).

The first thing organisations should do is make a review of their operations and evaluate if they really need a cloud service. If they would indeed benefit from cloud computing, the next steps would be deciding on the service model that would best fit the organisation and choosing the right cloud service provider. These factors are particularly important when you consider data security and compliance issues.

Read the fine print. Before entering into a contract with a cloud provider, businesses should first ensure that the responsibilities for both parties are well-defined, and if the cloud vendor has the vital mechanisms in place for contingency measures. For instance, how does the provider intend to carry out backup and data retrieval operations? Is there assurance that the business’ critical data and systems will be accessible at all times? And if not, how soon can the data be available in case of a temporary shutdown of the cloud?

Also, what if either the company or the cloud provider stops operations or goes bankrupt? It should be clear from the get go that the data remains the sole property of the consumer or company subscribing to the cloud.

As you can see, there are various concerns that need to be addressed closely before any agreement is finalised. While these details are usually found in the Service Level Agreements (SLAs) of most outsourcing and servicing contracts, unfortunately, the same cannot be said of cloud contracts.

Be aware of possible unforeseen costs. The ability of smaller companies to avail of computing resources on a scalable, pay-as-you-go model is one of the biggest selling points of cloud computing. But there’s also an inherent risk here: the possibility of runaway costs. Rather than allowing significant cost savings, small businesses could end up with a bill that’s bound to blow a big hole in their budget.

Take for example the case of a software company cited on InformationWeek.com to illustrate this point. The 250-server cluster the company rented from a cloud provider was inadvertently left turned on by the testing team over the weekend. As a result, their usual $2,300 bill ballooned to a whopping $23,400 over the course of one weekend.

Of course, in all likelihood, this isn’t going to happen to every small and midsize enterprise that shifts to the cloud. However, this should alert business owners, finance executives, and CEOs to look beyond the perceived savings and identify potential sources of unexpected costs. What may start as a fixed rate scheme for on-demand computing resources, may end up becoming a complex pricing puzzle as the needs of the business grow, or simply because of human error as the example above shows.

The caveats we’ve listed here are among the most crucial ones that soon-to-be cloud adopters need to keep in mind. But should these be reasons enough for businesses to stop pursuing a cloud strategy? Most definitely not. Armed with the right information, cloud computing is still the fastest and most effective way for many small enterprises to get the business off the ground with the lowest start-up costs.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

Ready to work with Denizon?