Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Energy Cooperation Mechanisms in the EU

While the original mission of the European Union was to bring countries together to prevent future wars, this has spun out into a variety of other cooperative mechanisms its founders may never have dreamed of. Take energy for example, where the European Energy Directive puts energy cooperation mechanisms in place to help member states achieve the collective goal.

This inter-connectivity is essential because countries have different opportunities. For example, some may easily meet their renewable targets with an abundance of suitable rivers, while others may have a more regular supply of sunshine. To capitalise on these opportunities the EU created an internal energy market to make it easier for countries to work together and achieve their goals in cost-effective ways. The three major mechanisms are

  • Joint Projects
  • Statistical Transfers
  • Joint Support Schemes

Joint Projects

The simplest form is where two member states co-fund a power generation, heating or cooling scheme and share the benefits. This could be anything from a hydro project on their common border to co-developing bio-fuel technology. They do not necessarily share the benefits, but they do share the renewable energy credits that flow from it.

An EU country may also enter into a joint project with a non-EU nation, and claim a portion of the credit, provided the project generates electricity and this physically flows into the union.

Statistical Transfers

A statistical transfer occurs when one member state has an abundance of renewable energy opportunities such that it can readily meet its targets, and has surplus credits it wishes to exchange for cash. It ?sells? these through the EU accounting system to a country willing to pay for the assistance.

This aspect of the cooperative mechanism provides an incentive for member states to exceed their targets. It also controls costs, because the receiver has the opportunity to avoid more expensive capital outlays.

Joint Support Schemes

In the case of joint support schemes, two or more member countries combine efforts to encourage renewable energy / heating / cooling systems in their respective territories. This concept is not yet fully explored. It might for example include common feed-in tariffs / premiums or common certificate trading and quota systems.

Conclusion

A common thread runs through these three cooperative mechanisms and there are close interlinks. The question in ecoVaro?s mind is the extent to which the system will evolve from statistical support systems, towards full open engagement.

Becoming Nimble the Agile Project Management Way

In dictionary terms, ?agile? means ?able to move quickly and easily?. In project management terms, the definition is ?project management characterized by division of tasks into short work phases called ?sprints?, with frequent reassessments and adaptation of plans?. This technique is popular in software development but is also useful when rolling out other projects.

Managing the Seven Agile Development Phases

  • Stage 1: Vision. Define the software product in terms of how it will support the company vision and strategy, and what value it will provide the user. Customer satisfaction is of paramount value including accommodating user requirement changes.
  • Stage 2: Product Roadmap. Appoint a product owner responsible for liaising with the customer, business stakeholders and the development team. Task the owner with writing a high-level product description, creating a loose time frame and estimating effort for each phase.
  • Stage 3: Release Plan. Agile always looks ahead towards the benefits that will flow. Once agreed, the Product Road-map becomes the target deadline for delivery. With Vision, Road Map and Release Plan in place the next stage is to divide the project into manageable chunks, which may be parallel or serial.
  • Stage 4: Sprint Plans. Manage each of these phases as individual ?sprints?, with emphasis on speed and meeting targets. Before the development team starts working, make sure it agrees a common goal, identifies requirements and lists the tasks it will perform.
  • Stage 5: Daily Meetings. Meet with the development team each morning for a 15-minute review. Discuss what happened yesterday, identify and celebrate progress, and find a way to resolve or work around roadblocks. The goal is to get to alpha phase quickly. Nice-to-haves can be part of subsequent upgrades.
  • Stage 6: Sprint Review. When the phase of the project is complete, facilitate a sprint review with the team to confirm this. Invite the customer, business stakeholders and development team to a presentation where you demonstrate the project/ project phase that is implemented.
  • Stage 7: Sprint Retrospective. Call the team together again (the next day if possible) for a project review to discuss lessons learned. Focus on achievements and how to do even better next time. Document and implement process changes.

The Seven Agile Development Phases ? Conclusions and Thoughts

The Agile method is an excellent way of motivating project teams, achieving goals and building result-based communities. It is however, not a static system. The product owner must conduct regular, separate reviews with the customer too.

2015 ESOS Guidelines Chapter 6 – Role of Lead Assessor

The primary role of the lead assessor is to make sure the enterprise?s assessment meets ESOS requirements. Their contribution is mandatory, with the only exception being where 100% of energy consumption received attention in an ISO 50001 that forms the basis of the ESOS report.

How to Find a Lead Assessor

An enterprise subject to ESOS must negotiate with a lead assessor with the necessary specialisms from one of the panels approved by the UK government. This can be a person within the organisation or an third party. If independent, then only one director of the enterprise need countersign the assessment report. If an employee, then two signatures are necessary. Before reaching a decision, consider

  • Whether the person has auditing experience in the sector
  • Whether they are familiar with the technology and the processes
  • Whether they have experience of auditing against a standard

The choice rests on the enterprise itself. The lead assessor performs the appointed role.

The Lead Assessor?s Role

The Lead Assessor?s main job is reviewing an ESOS assessment prepared by others against the standard, and deciding whether it meets the requirements. They may also contribute towards it. Typically their role includes:

  • Checking the calculation for total energy consumption across the entire enterprise
  • Reviewing the process whereby the 90% areas of significant consumption were identified
  • Confirming that certifications are in place for all alternate routes to compliance chosen
  • Checking that the audit reports meet the minimum criteria laid down by the ESOS system

Note: A lead assessor may partly prepare the assessment themselves, or simply verify that others did it correctly.

In the former instance a lead assessor might

  • Determine energy use profiles
  • Identify savings opportunities
  • Calculate savings measures
  • Present audit findings
  • Determine future methodology
  • Define sampling methods
  • Develop audit timetables
  • Establish site visit programs
  • Assemble ESOS information pack

Core Enterprise Responsibilities

The enterprise cannot absolve itself from responsibility for good governance. Accordingly, it remains liable for

  • Ensuring compliance with ESOS requirements
  • Selecting and appointing the lead assessor
  • Drawing attention to previous audit work
  • Agreeing with what the lead assessor does
  • Requesting directors to sign the assessment

The Environment Agency does not provide assessment templates as it believes this reduces the administrative burden on the enterprises it serves.

Ready to work with Denizon?