Six Sigma

Six Sigma has received much attention worldwide as a management strategy that is said to have brought about huge improvements and financial gains for such big-name companies as Allied Signal, General Electric (GE) and Motorola.

If you want to give your business the chance to attain the same resounding success, Six Sigma could be the method that will steer you towards that direction.

What is Six Sigma?

So what really is it? Six Sigma is a business management tool that was developed using the most effective quality improvement techniques from the last six decades. Basing its approach on discipline, verifiable data, and statistical calculations, Six Sigma aims to identify the causes of defects and eliminate them, thereby resulting in near-perfect products that meet or exceed customer’s satisfaction.

The core concept behind the Six Sigma method is that if an organisation can quantify the number of “defects” there are in a particular process, improvement activities can be implemented to eliminate them, and get as close to a “zero defects” scenario as possible. Defect here is defined as any process output that fails to meet customer specifications.

Six Sigma is also unique from other programs in that it calls for the creation of a special infrastructure of people within the organisation (“Champions“, “Black Belts“, “Green Belts“) who are to be expert in the methods.

Six Sigma Methodologies

When implementing Six Sigma projects, two methodologies are often employed. Although each method uses five phases each, these two are distinguished from each other using 5-letter acronyms and their specific uses.

DMAIC ? is the project methodology used to improve processes and maximise productivity of current business practices. The 5 letters stand for:

  • D ? Define (the problem)
  • M ? Measure (the main factors of the existing process)
  • A ??Analyse?(the information gathered to deter mine the causes of defects)
  • I ? Improve (the current process based on the analysis)
  • C ? Control (all succeeding processes so as to minimise additional defects)

DMADV – is the method most suitable if your business is looking to create new products or designs. The acronym stands for:

  • D ? Define (product goals as the consumer market demands)
  • M ? Measure (and identify product capabilities and risks)
  • A ??Analyse?(to create the best possible design)
  • D ? Design (the product or process details)
  • V ? Verify (the design)

How does Six Sigma differ from other quality programs?

If you think that Six Sigma is just another one of those business strategies that produce more hype than actual results, think again. Six Sigma uses three key concepts that sets it apart from other business management methods.

  • It is strictly a data-driven approach, where assumptions and guesswork do not figure in the decision making.
  • It focuses on achieving quantifiable financial results ? the bottom line ($) ? as much as giving emphasis on customer satisfaction.
  • It requires strong management leadership, while at the same time creating a role for every individual in the organisation.

Is Six Sigma right for your business?

While many other organisations such as Sony, Nokia, American Express, Xerox, Boeing, Kodak, Sun Micro-systems and many other blue chip companies have followed suit in adopting Six Sigma, the truth is, any company — whether you have a large manufacturing corporation, or a small business specialising in customer service.

Certainly, there is a lot more to Six Sigma than what you can probably absorb in one sitting or reading.

With our wide range of business management consultancy services, we can help you understand the Six Sigma method in the context of your business. We can also help you establish your improvement goals, set up your program, and train your own team of “champions” who can lead in implementing your Six Sigma goals.

Find out more about our Quality Assurance services in the following pages:

Check our similar posts

A Definitive List of the Business Benefits of Cloud Computing ? Part 4

Lowers cost of analytics

Big data and business intelligence (BI) have become the bywords in the current global economy. As consumers today browse, buy, communicate, use their gadgets, and interact on social networks, they leave in their trail a whole lot of data that can serve as a goldmine of information organisations can glean from. With such information at the disposal of or easily obtainable by businesses, you can expect that big data solutions will be at the forefront of these organisations’ efforts to create value for the customer and gain advantage over competitors.

Research firm Gartner’s latest survey of CIOs which included 2,300 respondents from 44 countries revealed that the three top priority investments for 2012 to 2015 as rated by the CIOs surveyed are Analytics and Business Intelligence, Mobile Technologies, and Cloud Computing. In addition, Gartner predicts that about $232 million in IT spending until 2016 will be driven by big data. This is a clear indication that the intelligent use of data is going to be a defining factor in most organisations.

Yet while big data offers a lot of growth opportunities for enterprises, there remains a big question on the capability of businesses to leverage on the available data. Do they have the means to deploy the required storage, computing resources, and analytical software needed to capture value from the rapidly increasing torrent of data?

Without the appropriate analytics and BI tools, raw data will remain as it is – a potential source of valuable information but always unutilised. Only when they can take the time, complexity and expense out of processing huge datasets obtained from customers, employees, consumers in general, and sensor-embedded products can businesses hope to fully harness the power of information.

So where does the cloud fit into all these?

Access to analytics and BI solutions have all too often been limited to large corporations, and within these organisations, a few business analysts and key executives. But that could quickly become a thing of the past because the cloud can now provide exactly what big data analytics requires – the ability to draw on large amounts of data and massive computing power – at a fraction of the cost and complexity these resources once entailed.

At their end, cloud service providers already deal with the storage, hardware, software, networking and security requirements needed for BI, with the resources available on an on-demand, pay-as-you-go approach. In doing so, they make analytics and access to relevant information simplified, and therefore more ubiquitous in the long run.

As the amount of data continues to grow exponentially on a daily basis, sophisticated analytics will be a priority IT technology across all industries, with organisations scrambling to find impactful insights from big data. Cloud-based services ensure that both small and large companies can benefit from the significantly reduced costs of BI solutions as well as the quick delivery of information, allowing for precise and insightful analytics as close to real time as possible.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Heijunka is & How it Smooths Call Centre Production

The Japanese word Heijunka, pronounced hi-JUNE-kuh means ?levelling? in the sense of balancing workflows. It helps lean organizations shift priorities in the face of fluctuating customer demand. The goal is to have the entire operation working at the same pace throughout, by continuously adjusting the balance between predictability, flexibility, and stability to level out demand.

Henry Ford turned the American motor manufacturing industry upside down by mass-producing his iconic black motor cars on two separate production lines. In this photograph, body shells manufactured upstairs come down a ramp and drop onto a procession of cars almost ready to roll in 1913.

Smoothing Production in the Call Centre Industry

Call Centres work best in small teams, each with a supervisor to take over complex conversations. In the past, these tended to operate in silos with each group in semi-isolation representing a different set of clients. Calls came through to operators the instant the previous ones concluded. By the law of averages, inevitably one had more workload than the rest at a particular point in time as per this example.

Modern telecoms technology makes it possible to switch incoming lines to different call centre teams, provided these are multi-skilled. A central operator controls this manually by observing imbalanced workflows on a visual system called a Heijunka Box. The following example comes from a different industry, and highlights how eight teams share uneven demand for six products.

This departure from building handmade automobiles allowed Henry to move his workforce around to eliminate bottlenecks. For example, if rolls of seat leather arrived late he could send extra hands upstairs to speed up the work there, while simultaneously slowing chassis production. Ford had the further advantage of a virtual monopoly in the affordable car market. He made his cars at the rate that suited him best, with waiting lists extending for months.

A Modern, More Flexible Approach

Forces of open competition and the Six Sigma drive for as-close-to-zero defects dictates a more flexible approach, as embodied in this image published by the Six Sigma organisation. This represents an ideal state. In reality, one force usually has greater influence, for example decreasing stability enforces a more flexible approach.

Years ago, Japanese car manufacturer Toyota moved away from batching in favour of a more customer-centric approach, whereby buyers could customise orders from options held in stock for different variations of the same basic model. The most effective approach lies somewhere between Henry Ford?s inflexibility and Toyota?s openness, subject to the circumstances at the moment.

A Worked Factory Example

The following diagram suggests a practical Heijunka application in a factory producing three colours of identical hats. There are two machines for each option, one or both of which may be running. In the event of a large order for say blue hats, the company has the option of shifting some blue raw material to the red and green lines so to have the entire operation working at a similar rate.

Predictability, Flexibility, and Stability at Call Centre Service

The rate of incoming calls is a moving average characterised by spikes in demand. Since the caller has no knowledge whether high activity advisories are genuine, it is important to service them as quickly as possible. Lean process engineering provides technology to facilitate flexibility. Depending on individual circumstances, each call centre may have its own definition of what constitutes an acceptably stable situation.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Energy Cooperation Mechanisms in the EU

While the original mission of the European Union was to bring countries together to prevent future wars, this has spun out into a variety of other cooperative mechanisms its founders may never have dreamed of. Take energy for example, where the European Energy Directive puts energy cooperation mechanisms in place to help member states achieve the collective goal.

This inter-connectivity is essential because countries have different opportunities. For example, some may easily meet their renewable targets with an abundance of suitable rivers, while others may have a more regular supply of sunshine. To capitalise on these opportunities the EU created an internal energy market to make it easier for countries to work together and achieve their goals in cost-effective ways. The three major mechanisms are

  • Joint Projects
  • Statistical Transfers
  • Joint Support Schemes

Joint Projects

The simplest form is where two member states co-fund a power generation, heating or cooling scheme and share the benefits. This could be anything from a hydro project on their common border to co-developing bio-fuel technology. They do not necessarily share the benefits, but they do share the renewable energy credits that flow from it.

An EU country may also enter into a joint project with a non-EU nation, and claim a portion of the credit, provided the project generates electricity and this physically flows into the union.

Statistical Transfers

A statistical transfer occurs when one member state has an abundance of renewable energy opportunities such that it can readily meet its targets, and has surplus credits it wishes to exchange for cash. It ?sells? these through the EU accounting system to a country willing to pay for the assistance.

This aspect of the cooperative mechanism provides an incentive for member states to exceed their targets. It also controls costs, because the receiver has the opportunity to avoid more expensive capital outlays.

Joint Support Schemes

In the case of joint support schemes, two or more member countries combine efforts to encourage renewable energy / heating / cooling systems in their respective territories. This concept is not yet fully explored. It might for example include common feed-in tariffs / premiums or common certificate trading and quota systems.

Conclusion

A common thread runs through these three cooperative mechanisms and there are close interlinks. The question in ecoVaro?s mind is the extent to which the system will evolve from statistical support systems, towards full open engagement.

Ready to work with Denizon?