Renewable energy – Is it a common man’s cup of tea?

I came across an article on a young graduate in renewable energy engineering. The fellow was doing technical sales and marketing jobs for renewable energy products though he felt that as a graduate, he ought to be doing more than just sales. His, sentiments, I can relate with but again thinking about the field of renewable energy, how many people understand what it is, its importance/ benefits, how to acquire it, its installation, costs etc.? Renewable energy is energy generated from natural resources. The renewable energy sources include sunlight, wind, rain, tides, geothermal heat and various forms of biomass. These sources are renewable naturally and continuously replenished, therefore this energy cannot be exhausted. Renewable energy technologies range from solar power, wind power, hydroelectricity/micro hydro, biomass and bio-fuels for transportation. Back to the aspiring young professional who felt that his place in the renewable energy sector lies in doing strategies and coming up with new products-the advice fronted to him was that doing technical sales is the best job for engineers, as it helps them impact on users of their products. Sales entail interacting with customers and knowing their needs so that the product features can be enhanced to suit the customer?s needs. Now, that is brilliant and accurate advice. It is however important to take into consideration that renewable energy is not a common man?s cup of tea and right now the focus all over the world is to build green economies. To me the need for more and more people to understand the benefits, savings and cost of renewable energy cannot be overemphasised. Effort should be made to keep marketing of renewable energy products/ services simple and conversational by avoiding use of acronyms or jargon explaining about operational details. More impact can be made if a marketing rather than technical sales approach is used. Technical sales have been described as boring (can be used as a sleeping aid), tends to use extensive vocabulary, jargon and acronyms that product users cannot relate with and tends to discuss the products technical aspects as opposed to the benefits to the customer. Fun should be created out of all this by making things simple and demonstrating cost savings and benefits of renewable energy.

Check our similar posts

Energy efficiency demystified

Energy bills are all about Energy efficiency but energy efficiency management is not all about bills. Energy efficiency means reducing carbon emissions, lowering energy costs and improving the quality of life. Energy efficiency is therefore about conservation of energy in a broader perspective; in fact energy efficiency is almost becoming a moral obligation.

Through adoption of appropriate energy efficiency measures, companies can significantly bring down the overhead costs making hundreds of dollars in savings. Energy efficiency is also synonymous with a better quality of life. Taking appropriate measures to ensure proper insulation protects your premises against extreme weather conditions leading to more productivity and an improvement in the bottom line.

Improved energy efficiency means a smaller amount of carbon emissions, less pollution and a better environment.

It is now easier than ever to visually identify where your facility is wasting energy, how much energy is being wasted while tracking the progress made in reducing energy consumption by turning that detailed, raw energy-consumption data into useful charts and figures.

Having visibility of your Energy usage gives you knowledge of what power you are consuming. This helps you change energy usage behaviours and this can have significant savings and reduction in your electricity bills. Real-time electricity consumption tracking is enough prodding for you to be on the lookout for inefficient energy consumption unit’s e.g.? Heating and cooling equipment, ducts insulation of your premises or a failure of one of these components to perform as intended. Pin-pointing the problem areas is not a walk in the park but fixing it can make your building more energy-efficient and comfortable.

A wide range of solutions are now available for charting and analysing energy consumption that helps energy managers, facilities managers, energy consultants and building-services engineers. These will not only offer advice but will enable you provide tailor made solutions for your organisation by assisting you in developing a sustainable energy strategy. Our energy monitoring software is one example.?

New Focus on Monitoring Soil

There is nothing new about monitoring soil in arid conditions. South Africa and Israel have been doing it for decades. However climate change has increased its urgency as the world comes to terms with pressure on the food chain. Denizon decided to explore trends at the macro first world level and the micro third world one.

In America, the Coordinated National Soil Moisture Network is going ahead with plans to create a database of federal and state monitoring networks and numerical modelling techniques, with an eye on soil-moisture database integration. This is a component of the National Drought Resilience Partnership that slots into Barrack Obama?s Climate Action Plan.

This far-reaching program reaches into every corner of American life to address the twin scourges of droughts and inundation, and the agency director has called it ?probably ?… one of the most innovative inter-agency tools on the planet?. The pilot project involving remote moisture sensing and satellite observation targets Oklahoma, North Texas and surrounding areas.

Africa has similar needs but lacks America?s financial muscle. Princeton University ecohydrologist Kelly Caylor is bridging the gap in Kenya and Zambia by using cell phone technology to transmit ecodata collected by low-cost ?pulsepods?.

He deploys the pods about the size of smoke alarms to measure plants and their environment.?Aspects include soil moisture to estimate how much water they are using, and sunlight to approximate the rate of photosynthesis. Each pod holds seven to eight sensors, can operate on or above the ground, and transmits the data via sms.

While the system is working well at academic level, there is more to do before the information is useful to subsistence rural farmers living from hand to mouth. The raw data stream requires interpretation and the analysis must come through trusted channels most likely to be the government and tribal chiefs. Kelly Caylor cites the example of a sick child. The temperature reading has no use until a trusted source interprets it.

He has a vision of climate-smart agriculture where tradition gives way to global warming. He involves local farmers in his research by enrolling them when he places pods, and asking them to sms weekly weather reports to him that he correlates with the sensor data. As trust builds, he hopes to help them choose more climate-friendly crops and learn how to reallocate labour as seasons change.

How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?