Mobile Workforce Management in a nutshell

It is fairly common for businesses to have staff working across many different locations across the country or even the world.  Engaged in various activities like  door-to-door sales, delivery and installations, service maintenance, conducting inspections & investigations or even data collection.

Managing and co-ordinating tasks, scheduling activities, planning and monitoring activities and communicating can often be challenging.

Mobile Workforce Management is the automation of the entire end-to-end workflow management and operations of any field service workers. 

Mobile Workforce Management Synonyms

Mobile Workforce Management is also known as

  • Field Service Management
  • Job Scheduling Software
  • Job Management Software

Advantages of Mobile Workforce Management

It is increasingly clear that there needs to be a certain sense of discipline and streamlining of field operations and important to automate certain tasks within field sales and operations, primarily because it helps you to track your assets remotely and ensuring contact with your workforce when required. Enabling your team to get in touch when required.

Most importantly, engineers, sales representatives and customer care executives can easily send information, scan receipts, Invoice customers and retrieve other crucial information in a standardized and streamlined manner. Assisting in regulating your business and also bringing some order to what is usually a very chaotic mode of working.

Why choose Mobile Workforce Management

Work Force Management tools help you to stay in control. They assist in automating what can and should be automated leaving only the crucial human-human interactivity. Helping you to keep a record of all interactions and important data within a database, without you having to manually go through sales receipts, complaint slips and other such details.

A Field Force Management tool is a time-saver and efficiency tool for companies. Moreover, these tools help to automate several aspects of your day to day operations, leading to an increase in productivity and motivation.

Streamlining operations, will also ensure that important stakeholders are well informed and management visibility is enhanced. Helping your business to make smarter decisions and help serve your customers better.

Field Force Management is similar to an Enterprise Resource Planning (ERP) solution but is vastly different. It is specifically targeted at staff that work on the field and is intended to make their and your work more streamlined, transparent and easy to track.

Cloud based solutions help you automate

 Field Force Management is usually cloud based which means all data is stored and accessible on secure cloud servers. There is no question of losing important data or not being able to retrieve something important. If something goes missing, there will usually be a backup available. Field force management tools include the software, the hardware and also the kind of training that is required for users to use it efficiently.

The software usually helps in saving and processing information while the hardware helps employees to enter important data into devices while they are on the job. Sometimes, field force solutions can also be a mobile app which negates the need for a specific or special device.

This is very important when it comes to field jobs as carrying different devices can prove to be a cumbersome job. At the end of the day, field force solutions are meant to reduce the burden on staff and not actually inadvertently increase it.

Denizon?s FieldElite Mobile Workforce management application provides significant improvements in efficiency and service with a switch to digital working and the elimination of paperwork.

All the information that is stored on the cloud can be run through analytics software so that you get the kind of reports that you are looking for to improve your business.

Field Force Management Process

A field force management tool helps you to remain in contact with your staff while they are at work on the field. This helps you to track your personnel in real time. Field personnel or your staff can log in and enter their attendance using a smartphone. You can assign that particular day?s task remotely using a web console or your own smartphone.

Next, they can carry out whatever duties they need to while you get all the alerts that you set to receive. This helps to increase transparency. You can choose to receive alerts on your phone or on your desktop.

Finally, staff can tag completed tasks with audio and images, instead of they having to type reports. This helps to focus more on the job than on job reporting. Last but not the least, location tags help you to ensure that the job is done at the right place. Your staff will not be able to take your generosity for granted.

All in all, a field force management tool helps you to track and control your staff without you having to be physically present with them and this is the beauty of this tool.

Summary

Field Force Management helps companies to reduce administration expense and improve productivity. This helps to automate data integration which is usually done with the help of cloud servers. Moreover, you can set invoice parameters that help you to also keep track of stocks, inventories and engage in P.O. and task management.

A number of field force management users also use it as a tool to engage in credit management. Banks and insurance companies particularly find this tool helpful as payments can be received on the job, instead of asking customers to pay online or offline. This also helps in building valuable customer relationships and enhance loyalty.

Thirdly, a field force management tool helps to increase planning efficiency. This means, you will be able to allocate tasks and optimize routing. All this helps to increase your ROI at the end of the day and get back the money you invest on field force management.

Finally, you will have more control over productivity and sales thanks to automation of data collection. You will also have more control over the execution of tasks and that will invariably make your company leaner and smarter.

Check our similar posts

Why Predictive Maintenance is More Profitable than Reactive Maintenance

Regular maintenance is needed to keep the equipment in your facility operating normally. All machinery has a design lifespan, and your goal is to extend this as long as possible, while maintaining optimal production levels. How you go about the maintenance matters, from routine checks to repairing the damaged component parts?all before the whole unit needs to be tossed away and a new one purchased and installed. Here, we will break down the different approaches used, and show you why more industries and businesses are turning to proactive maintenance modes as opposed to the traditional reactive approaches for their?field service operations.?

Reactive Maintenance: A wait and see game

Here, you basically wait for a problem to occur, then fix it. It’s also commonly referred to as a “Run-to-Failure” approach, where you operate the machines and systems until they break. Repairs are then carried out, restoring it to operational condition.?

At face value, it appears cost-effective, but the reality on the ground is far much different. Sure, when the equipment is new, you can expect minimal cases of maintenance. During this time, there?ll be money saved. However, as time progresses there?ll be increased wear, making reliance on a reactive maintenance approach a costly endeavour. The breakdowns are more frequent, and inconsistent as well. Unplanned expenses increase operational costs, and there will be lost productivity during the periods in which the affected machinery won’t be in operation.?

While reactive maintenance makes sense when you’re changing a faulty light bulb at home, things are more complicated when it comes to dealing with machinery in industries, or for those managing multiple residential and commercial properties. For the light bulb, it’s easier to replace it, and failure doesn’t have a ripple effect on the rest of the structures in the household. For industries, each time there is equipment failure, you end up with downtime, production can grind to a halt, and there will be increased environmental risks during equipment start-up and shutdown. If spare parts are not readily available, there will be logistical hurdles as you rush the shipping to get the component parts to the facility. Add this to overworked clients in a bit to complete the repair and to make up for lost hours and delayed customer orders.

For field service companies, more time ends up being spent. After all, there?s the need of knowing which parts needed to be attended to, where they are, and when the servicing is required. Even when you have a planned-out schedule, emergency repairs that are required will force you to immediately make changes. These ramps up the cots, affecting your operations and leading to higher bills for your client. These inconveniences have contributed to the increased reliance on?field service management platforms that leverage on data analytics and IoT to reduce the repair costs, optimise maintenance schedules, and?reduce unnecessary downtimes?for the clients.

Waiting for the machinery to break down actually shortens the lifespan of the unit, leading to more replacements being required. Since the machinery is expected to get damaged much sooner, you also need to have a large inventory of spare parts. What’s more, the damages that result will be likely to necessitate more extensive repairs that would have been needed if the machinery had not been run to failure.?

Pros of reactive maintenance

  1. Less staff required.
  2. Less time is spent on preparation.

Cons of reactive maintenance

  1. Increased downtime during machine failure.
  2. More overtime is taken up when conducting repairs.
  3. Increased expenses for purchasing and storing spare parts.?
  4. Frequent equipment replacement, driving up costs.?

This ?If it ain’t broke, don’t fix it? approach leads to hefty repair and replacement bills. A different maintenance strategy is required to minimise costs. Proactive models come into focus. Before we delve into predictive maintenance, let’s look at the preventive approach.?

Preventive Maintenance: Sticking to a timetable

Here, maintenance tasks are carried out on a planned routine?like how you change your vehicle?s engine oil after hitting a specific number of kilometres. These tasks are planned in intervals, based on specific triggers?like a period of time, or when certain thresholds are recorded by the meters. Lubrication, carrying out filter changes, and the like will result in the equipment operating more efficiently for a longer duration of time. While it doesn’t completely stop catastrophic failures from occurring, it does reduce the number of failures that occur. This translates to capital savings.??

The Middle Ground? Merits And Demerits Of Preventive Maintenance

This periodic checking is a step above the reactive maintenance, given that it increases the lifespan of the asset, and makes it more reliable. It also leads to a reduced downtime, thus positively affecting your company?s productivity. Usually, an 80/20 approach is adopted,?drawing from Pareto’s Principle. This means that by spending 80% of time and effort on planned and preventive maintenance, then reactive maintenance for those unexpected failures that pop up will only occur 20% of the time. Sure, it doesn’t always come to an exact 80/20 ratio, but it does help in directing the maintenance efforts of a company, and reducing the expenses that go into it.?

Note that there will need to be a significant investment?especially of time, in order to plan a preventive maintenance strategy, plus the preparation and delegation of tasks. However, the efforts are more cost effective than waiting for your systems and machinery to fail in order to conduct repairs. In fact, according to the US Dept. of Energy, a company can save between 12-18 % when using a preventive maintenance approach compared to reactive maintenance.

While it is better than the purely reactive approach, there are still drawbacks to this process. For instance, asset failure will still be likely to occur, and there will be the aspect of time and resource wastage when performing unneeded maintenance, especially when technicians have to travel to different sites out in the field. There is also the risk of incidental damage to machine components when the unneeded checks and repairs are being carried out, leading to extra costs being incurred.

We can now up the ante with predictive maintenance. Let’s look at what it has to offer:

Predictive Maintenance: See it before it happens

This builds on preventive maintenance, using data analytics to smooth the process, reduce wastage, and make it more cost effective. Here, the maintenance is conducted by relying on trends observed using data collected from the equipment in question, such as through vibration analysis, energy consumption, oil analysis and thermal imaging. This data is then taken through predictive algorithms that show trends and point out when the equipment will need maintenance. You get to see unhealthy trends like excessive vibration of the equipment, decreasing fuel efficiency, lubrication degradation, and their impact on your production capacities. Before the conditions breach the predetermined parameters of the equipment’s normal operating standards, the affected equipment is repaired or the damaged components replaced.??

Basically, maintenance is scheduled before operational or mechanical conditions demand it. Damage to equipment can be prevented by attending to the affected parts after observing a decrease in performance at the onset?instead of waiting for the damage to be extensive?which would have resulted in system failure. Using?data-driven?field service job management software will help you to automate your work and optimise schedules, informing you about possible future failures.

Sensors used record the condition of the equipment in real time. This information is then analysed, showing the current and future operational capabilities of the equipment. System degradation is detected quickly, and steps can be taken to rectify it before further deterioration occurs. This approach optimises operational efficiency. Firstly, it drastically reduces total equipment failure?coming close to eliminating it, extending the lifespan of the machinery and slashing replacement costs. You can have an orderly timetable for your maintenance sessions, and buy the equipment needed for the repairs. Speaking of which, this approach minimises inventory especially with regards to the spare parts, as you will be able to note the specific units needed beforehand and plan for them, instead of casting a wide net and stockpiling spare parts for repairs that may or may not be required. Repair tasks can be more accurately scheduled, minimising time wasted on unneeded maintenance.??

Preventive vs Predictive Maintenance?

How is predictive different from preventive maintenance? For starters, it bases the need for maintenance on the actual condition of the equipment, instead of a predetermined schedule. Take the oil-change on cars for instance. With the preventive model, the oil may be changed after every 5000?7500 km. Here, this change is necessitated because of the runtime. One doesn’t look at the performance capability and actual condition of the oil. It is simply changed because “it is now time to change it“. However, with the predictive maintenance approach, the car owner would ideally analyse the condition of the oil at regular intervals- looking at aspects like its lubrication properties. They would then determine if they can continue using the same oil, and extend the duration required before the next oil change, like by another 3000 kilometres. Perhaps due to the conditions in which the car had been driven, or environmental concerns, the oil may be required to be changed much sooner in order to protect the component parts with fresh new lubricant. In the long run, the car owner will make savings. The US Dept. of Energy report also shows that you get 8-12% more cost savings with the predictive approach compared to relying on preventive maintenance programs. Certainly, it is already far much more effective compared to the reactive model.?

Pros of Predictive Maintenance

  1. Increases the asset lifespan.
  2. Decreases equipment downtime.
  3. Decreases costs on spare parts and labour.
  4. Improves worker safety, which has the welcome benefit of increasing employee morale.
  5. Optimising the operation of the equipment used leads to energy savings.
  6. Increased plant reliability.

Cons of Predictive Maintenance

  1. Initial capital costs included in acquiring and setting up diagnostic equipment.
  2. Investment required in training the employees to effectively use the predictive maintenance technology adopted by the company.

The pros of this approach outweigh the cons.?Independent surveys on industrial average savings?after implementing a predictive maintenance program showed that firms eliminated asset breakdown by 70-75%, boosted production by 20-25%, and reduced maintenance costs by 25-30%. Its ROI was an average of 10 times, making it a worthy investment.

What Is Technical Debt? A Complete Guide

You buy the latest iPhone on credit. Turn to fast car loan services to get yourself those wheels you’ve been eyeing for a while. Take out a mortgage to realise your dream of being a homeowner. Regardless of the motive, the common denominator is going into financial debt to achieve something today, and pay it off in future, with interest. The final cost will be higher than the loan value that you took out in the first place. However, debt is not limited to the financial world.

Technical Debt Definition

Technical debt – which is also referred to as code debt, design debt or tech debt – is the result of the development team taking shortcuts in the code to release a product today, which will need to be fixed later on. The quality of the code takes a backseat to issues like market forces, such as when there’s pressure to get a product out there to beat a deadline, front-run the competition, or even calm jittery consumers. Creating perfect code would take time, so the team opts for a compromised version, which they will come back later to resolve. It’s basically using a speedy temporary fix instead of waiting for a more comprehensive solution whose development would be slower.

How rampant is it? 25% of the development time in large software organisations is actually spent dealing with tech debt, according to a multiple case study of 15 organizations. “Large” here means organizations with over 250 employees. It is estimated that global technical debt will cost companies $4 trillion by 2024.

Is there interest on technical debt?

When you take out a mortgage or service a car loan, the longer that it takes to clear it the higher the interest will be. A similar case applies to technical debt. In the rush to release the software, it comes with problems like bugs in the code, incompatibility with some applications that would need it, absent documentation, and other issues that pop up over time. This will affect the usability of the product, slow down operations – and even grind systems to a halt, costing your business. Here’s the catch: just like the financial loan, the longer that one takes before resolving the issues with rushed software, the greater the problems will pile up, and more it will take to rectify and implement changes. This additional rework that will be required in future is the interest on the technical debt.

Reasons For Getting Into Technical Debt

In the financial world, there are good and bad reasons for getting into debt. Taking a loan to boost your business cashflow or buy that piece of land where you will build your home – these are understandable. Buying an expensive umbrella on credit because ‘it will go with your outfit‘ won’t win you an award for prudent financial management. This also applies to technical debt.

There are situations where product delivery takes precedence over having completely clean code, such as for start-ups that need their operations to keep running for the brand to remain relevant, a fintech app that consumers rely on daily, or situations where user feedback is needed for modifications to be made to the software early. On the other hand, incurring technical debt because the design team chooses to focus on other products that are more interesting, thus neglecting the software and only releasing a “just-usable” version will be a bad reason.

Some of the common reasons for technical debt include:

  • Inadequate project definition at the start – Where failing to accurately define product requirements up-front leads to software development that will need to be reworked later
  • Business pressure – Here the business is under pressure to release a product, such as an app or upgrade quickly before the required changes to the code are completed.
  • Lacking a test suite – Without the environment to exhaustively check for bugs and apply fixes before the public release of a product, more resources will be required later to resolve them as they arise.
  • Poor collaboration – From inadequate communication amongst the different product development teams and across the business hierarchy, to junior developers not being mentored properly, these will contribute to technical debt with the products that are released.
  • Lack of documentation – Have you launched code without its supporting documentation? This is a debt that will need to be fulfilled.
  • Parallel development – This is seen when working on different sections of a product in isolation which will, later on, need to be merged into a single source. The greater the extent of modification on an individual branch – especially when it affects its compatibility with the rest of the code, the higher the technical debt.
  • Skipping industrial standards – If you fail to adhere to industry-standard features and technologies when developing the product, there will be technical debt because you will eventually need to rework the product to align with them for it to continue being relevant.
  • Last-minute product changes – Incorporating changes that hadn’t been planned for just before its release will affect the future development of the product due to the checks, documentation and modifications that will be required later on

Types of Technical Debt

There are various types of technical debt, and this will largely depend on how you look at it.

  • Intentional technical debt – which is the debt that is consciously taken on as a strategy in the business operations.
  • Unintentional technical debt – where the debt is non-strategic, usually the consequences of a poor job being done.

This is further expounded in the Technical Debt Quadrant” put forth by Martin Fowler, which attempts to categorise it based on the context and intent:

Technical Debt Quadrant

Source: MartinFowler.com

Final thoughts

Technical debt is common, and not inherently bad. Just like financial debt, it will depend on the purpose that it has been taken up, and plans to clear it. Start-ups battling with pressure to launch their products and get ahead, software companies that have cut-throat competition to deliver fast – development teams usually find themselves having to take on technical debt instead of waiting to launch the products later. In fact, nearly all of the software products in use today have some sort of technical debt.

But no one likes being in debt. Actually, technical staff often find themselves clashing with business executives as they try to emphasise the implications involved when pushing for product launch before the code is completely ready. From a business perspective, it’s all about weighing the trade-offs, when factoring in aspects such as the aspects market situation, competition and consumer needs. So, is technical debt good or bad? It will depend on the context. Look at it this way: just like financial debt, it is not a problem as long as it is manageable. When you exceed your limits and allow the debt to spiral out of control, it can grind your operations to a halt, with the ripple effects cascading through your business.

 

How SOA can help Transformation

Undoubtedly, today’s business leaders face myriad challenges ranging from fierce market competition to increasing market unpredictability. In addition, the modern consumer is more informed and in control of what, where and how they purchase. Couple these challenges with effects of globalization, and you will appreciate that need for business transformation is more of a necessity than a privilege.

As recent business trends show, top companies are characterized by organizational and operational agility. Instead of being shaken by rapid technological changes and aftershocks associated with market changes, they are actually invigorated by these trends. In order to survive in these turbulent times, business leaders are opting to implement corporate transformation initiatives to develop leaner, more agile and productive operations. In line with this, service oriented architecture (SOA) has emerged as an essential IT transformation approach for implementing sustainable business agility.

By definition, service oriented architecture is a set of principles and techniques for developing and designing software in form of business functionalities. SOA allows users to compile together large parts of functionality to create ad hoc service software entirely from the template software. This is why it is preferred by CIOs that are looking to develop business agility. It breaks down business operations into functional components (referred to as services) that can be easily and economically merged and reused in applicable scenarios to meet evolving business needs. This enhances overall efficiency, and improves organizational interconnectivity.

SOA identifies shortcomings of traditional IT transformation approaches that were framed in monolithic and vertical silos all dependent on isolated business units. The current business environment requires that individual business units should be capable of supporting multiple types of users, multiple communication channels and multiple lines of business. In addition, it has to be flexible enough to adapt to changing market needs. In case one is running a global business enterprise, SOA-enabled business transformation can assist in achieving sustainable agility and productivity through a globally integrated IT platform. SOA realizes its IT and business benefits by adopting a design and analyzing methodology when developing services. In this sense a service consists of an independent business unit of functionality that is only available through a defined interface. Services can either be in the form of nano-enterprises or mega-enterprises.

Furthermore, with SOA an organization can adopt a holistic approach to solve a problem. This is because the business has more control over its functions. SOA frees the organization from constraints attributed to having a rigid single use application that is intricately meshed into a fragmented information technology infrastructure. Companies that have adopted service oriented architecture as their IT transformation approach, can easily repurpose, reorganize and rescale services on demand in order to develop new business processes that are adaptable to changes in the business environment. In addition, it enables companies to upgrade and enhance their existing systems without incurring huge costs associated with ‘rip and replace’ IT projects.

In summary, SOA can be termed as the cornerstone of modern IT transformation initiatives. If properly implemented great benefits and a sharp competitive advantage can be achieved. SOA assists in transforming existing disparate and unconnected processes and applications into reusable services; creating an avenue where services can be rapidly reassembled and developed to support market changes.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?