Introduction to Matrix Management

A leader is responsible to empower his people and get the best out of them. Yet an organisational structure can either help or hamper performance. Worst, it can make or break success.

Looking at the fast-changing world of the global economy, whatsoever slows up and obstructs decision-making is a challenge. Hierarchical management is rather unattractive and functional silos are unlikable. Instead, employees desire to create teams equipped with flexibility, cooperation and coordination.

Recognising that companies have both vertical and horizontal chains of command, the matrix model is created. The concept of this principle lies in the ability to manage the collaboration of people across various functions and achieve strategic objectives through key projects.

Consider this scenario:

Ian is a sales executive of a company. His role is to sell a new product under the supervision of a product manager. The manager is expert about the product and she is accountable to coordinate the people across the organisation, making sure the product is achieved.

Moreover, Ian also reports to the sales manager who oversees his overall performance, monitors his pay and benefits and guides his personal development.

Complicated it may seem but this set-up is common to companies that seek to maximise the effect of expert product managers, without compromising the function of the staffing overhead in control of the organisation. This is a successful approach to management known as Matrix Management.

Matrix Management Defined

Matrix management is a type of organisational management wherein employees of similar skills are shared for work assignments. Simply stated, it is a structure in which the workforce reports to multiple managers of different roles.

For example, a team of engineers work under the supervision of their department head, which is the engineering manager. However, the same people from the engineering department may be assigned to other projects where they report to the project manager. Thus, while working on a designated project, each engineer has to work under various managers to accomplish the job.

Historical Background

Although some critics say that matrix management was first adopted in the Second World War, its origins can be traced more reliably to the US space programme of the 1960’s when President Kennedy has drawn his vision of putting a man on the moon. In order to accomplish the objective, NASA revolutionised its approach on the project leading to the consequent birth of ?matrix organisation?. This strategic method facilitated the energy, creativity and decision-making to triumph the grand vision.

In the 1970’s, matrix organisation received huge attention as the only new form of organisation in the twentieth century. In fact it was applied by Digital Equipment, Xerox, and Citibank. Despite its initial success, the enthusiasm of corporations with regards to matrix organisation declined in the 1980’s, largely because it was complex.

Furthermore, the drive for motivating people to work creatively and flexibly has only strengthened. And by the 1990’s, the evolution of matrix management geared towards creation and empowerment of virtual teams that focused on customer service and speedy delivery.

Although all forms of matrix has loopholes and flaws, research says that until today, matrix management is still the leading approach used by companies to achieve organisational goals.

Check our similar posts

What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Eck Industries Sheds Fresh Light

William Eck began his business in 1948 in a 650m2 garage building. The aluminium foundry prospered, and now has an 18,500m2 factory in Manitowoc, Wisconsin employing 250 people casting a variety of casings. Like high-tech industries around the globe it needs effective illumination. After it measured its carbon footprint, it realised it needed energy efficient lighting too.

When Eck Industries began its review it had around 360 high-pressure sodium lights throughout the plant. Their operating cost was substantial. After taking independent advice from an independent agency they realised they needed to replace these with more energy-efficient fluorescent lights that consume half as much energy.

The feasibility team conducted performance tests to determine the optimum solution. After selecting enclosed, gasketed and waterproof T8 fluorescents (available in G13 bipin, single pin and recessed double contacts) they collaborated with the supplier to calculate the best combination of 4 and 6 bulb fixtures.

The fittings they chose cost $60,000 plus $10,000 installation. However a $33,000 energy rebate wrote down 47% of this immediately. They achieved further energy savings by attaching motion sensors to lights over low-traffic walkways.

The retrofit was a huge success, with an 8 month payback via a direct operating saving of $55,000 a year. Over and above enhanced illumination Eck Industries slashed 674,000 kilowatt hours off its annual lighting bill. During the 20 year design life, this equates to a total 13.5 million kilowatt hours. Other quantifiable benefits include 443 tons less carbon, 2 tons less sulphur dioxide, and 1 ton less nitrogen oxide per year.

Many companies face similar opportunities but fail to capitalise on them for a number of reasons. These may include not being aware of what is available, lacking technical insight, being short of working capital and simply being too busy to focus on them.

Eck Industries got several things right. Firstly, they consulted an independent specialist; secondly they trusted their supplier to provide honest advice, and thirdly they accepted that any significant saving is worth chasing down. Other spin-offs were safer, more attractive working conditions and an opportunity to take their foot off the carbon pedal. This is an excellent example of what is possible when you try.

If you have measured your illumination cost and are concerned about it (but are unsure what the metric means within the bigger picture) then Ecovaro offers online reports comparing it with your industry average, and highlights the cost-benefits of alternative lighting. 

A Definitive List of the Business Benefits of Cloud Computing ? Part 3

Strengthens business continuity/disaster recovery capabilities

Today’s business landscape calls for companies to have reliable business continuity and disaster recovery capabilities. After all, when the system goes down, customers and even employees would rarely ask ‘why‘ or ‘what happened‘ but instead go directly to the ‘how soon can we get back up‘ part.

So unless they’ve been struck by the same unforeseen disaster your business is also experiencing, a couple of hours downtime is plenty enough for most of these people. What’s worse is when they simply don’t wait until they get access again and just go to other providers that can offer the same services. In short, your inability to provide continuous IT and business services could translate to lost opportunities which your competition would only be too willing to gain. And that’s not even counting the possibility of losing essential data and other potential negative impact that critical IT failure can bring about.

The answer to avoiding such a scenario is of course, having a sound business continuity and disaster recovery plan in place. But this is actually easier said than done.

Traditionally, setting up a business continuity plan entailed some tedious procedures in addition to very costly infrastructure. We’re talking here about acquiring and maintaining practically a replication of the hardware infrastructure and environments currently existing for business-critical systems and data. Note that these mirror systems should be set-up, housed, and maintained in a remote facility or location.

Making the deployment even more complex is the constant need to update the data in storage as well as keep software applications in sync between the system in use and the one on standby mode. This process would involve the physical transfer of data and syncing of applications, which is cumbersome and again, expensive.

While large enterprises would not even think twice about having to spend so much to ensure that operations would never come to a grinding halt, most small and mid-sized organisations would not have the required financial means for them to even start considering this option. Often, the bulk of their disaster recovery plan would simply consist of some tape backups, and a lot of hoping that they would never have to suffer from any outage or IT failure.

But all that can be changed with the arrival of cloud computing.

A cloud strategy offers an affordable solution for business continuity and disaster recovery for SMBs with limited resources and even big companies trying to minimise expenses by looking for alternative options.

A reliable service provider would already have the required infrastructure and software vital to a viable BC/DR plan and complete with the appropriate security measures. Organisations need not spend upfront for these facilities, but get to benefit from having updated data backup and a virtualised mirror system that would allow them to quickly get back up in the event of an outage or catastrophic disaster.

When looking to the cloud for a cost-effective BC/DR plan however, it’s worth keeping in mind that not all cloud providers are created equal. That’s why businesses also have many important factors to take into account before signing cloud contracts.

Yes, provision for continuity and and taking necessary precautions against outages are inherent in the cloud service itself, but you’d be surprised how many of these providers don’t actually take responsibility for service interruption. To give organisations some assurance of the cloud company’s capacity for continued service, contracts should stipulate availability guarantees and liability for downtime that the provider is willing to answer for.

Once these relevant issues are ironed out however, it’s easy for business to see how cloud-based data storage and computing can significantly lower the costs involved for SMB BC/DR while greatly improving efficiency, mobility, and collaboration capabilities.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?