How to be cleaner and greener indoors

The supply of water on planet earth is finite hence the need to conserve this precious resource. Water is a utility that is often used in and outdoors and for that reason, water conservation activities should be undertaken everywhere.

Get greener everywhere
Water saving can be achieved through various ways. Of utmost importance, fixing leaks should be undertaken in all areas. Small household leaks can add up to gallons of water lost every day. It is therefore important to check all water system fixtures and ensure that there are no leakages.

Greener bathroom habits
Turning off taps- this should be practised in the bathroom especially while shaving and brushing teeth. One could also consider using showers instead of baths since showers use less water and get into the habit of taking shorter showers.

Clean and green dishes
The kitchen is one of the areas where a lot of water is used. Some of the ways through which water can be conserved in the kitchen are:

  • Use of basins when washing dishes by hand
  • Using a dishwasher – when using the dish washer, it is important to make sure it’s fully loaded. Scraping plates instead of rinsing before loading it into the dishwasher will also go a long way in the conservation of the valuable commodity called water

Green your laundry and earn green bucks
The other area where water saving can be made is the laundry room. Washing only full loads of laundry will ensure that your washing machine is running at full efficiency hence you will be able to maximise your washer for energy efficiency. Always ensure you use the appropriate water level or load size selection on the washing machine. All these will not only save water but energy too and since savings are earnings you can smile all the way to the bank where some green bucks will be credited to your account.

Check our similar posts

Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Benefits Realisation Frameworks – A Useful Handle

One of the greatest challenges of project management is maintaining top-down support in the face of fluctuating priorities. If you elect to take on the role yourself and are peppered by other priorities, it can be a challenge to exactly remember why you are changing things and what your goals are. Sometimes you may not even notice you have reached your goal.

The Benefits Realisation Chart-room

The Benefits Realisation Model is a framework on which to hang key elements of any project. These traditionally include the following, although yours may not necessarily be the same:

  • Definition of the project goal
  • Quantification of intended benefits
  • Project plan versus actual progress
  • How you know you reached your goal
  • Quantification of actual benefits

Another way of describing Benefits Realisation Frameworks is they answer four fundamental questions that every project manager should know by heart:

  • What am I going to do?
  • How am I going to do it?
  • When will I know it’s done?
  • What exactly did I achieve?

The Benefits Realisation Promise

An astounding number of projects fail to reach completion, or miss their targets. It’s not for nothing that the expression ?after the project failed the non-participants were awarded medals? is often used in project rooms. We’re not saying that it is a panacea for success. However it can alert you to warnings that your project is beginning to falter in terms of delivering the over-arching benefits that justify the effort.

When Projects Wander Off-Target

Pinning blame on participants is pointless when project goals are flawed. For example, the goals may be entirely savings-focused and not follow through on what to do with the windfall. At other times realisation targets may be in place, but nobody appointed to recycle the benefits back into the organisation. This is why a Benefits Realisation Framework needs to look beyond the project manager?s role.

Realisation Management in Practice

If the project framework does not look beyond the project manager?s role, then it is over when it reaches its own targets ? and can even run the risk of being an event that feeds entirely off itself. In order to avoid a project being a means to its own end, this first phase must culminate with handover to a benefits realisation custodian.

An example of this might be a project to centralise facilities that is justified in terms of labour savings. The project manager?s job is to build the structure. Someone else needs to rationalise the organisation.

In conclusion, the Benefits Realisation Framework is a useful way of ensuring a project does not only achieve its internal goals, but also remains a focus of management attention because of its extended, tangible benefits.

Ready to work with Denizon?