How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

IT Systems Implementation

Are you ready to find out how your newly accepted IT system fares in the real world? Although a rigorous Acceptance testing process can spot a wide spectrum of flaws in a newly constructed IT system, there is no way it can identify all possible defects. The moment the IT system is delivered into the hands of actual end users and other stakeholders, it is effectively stepping out of a controlled and secure environment.

Thus, it is during this phase wherein issues having direct impact on the business can arise.

It is our duty to ensure that the Systems Implementation phase is carried out as thoroughly, professionally, and efficiently as possible.

Thoroughly, because we need to include all relevant data and other deliverables, eliminate hard-to-detect miscalculated results, and substantially reduce the probability of business and mission critical issues popping up in the future;

Professionally, because it is the best way to address the sensitive process of turning over a new system to users who have gotten used to the old one;

And efficiently, because we want to minimise the duration over which all stakeholders have to adapt to the new system and allow them to move on to the process of growing the business.

Preparation

Louis Pasteur once said, “Luck favours the mind that is prepared.”

While we certainly won’t leave anything to chance, we do put substantial weight on the Preparation stage of Systems Implementation. We’re so confident with the strategies we employ in Preparation, that we can assure you of an utterly seamless Deployment and Transition phase.

By this we mean that issues that may arise during Deployment and Transition will be handled smoothly and efficiently because your people will know exactly what to do.

Here’s how we will prepare your organisation for Deployment:

  • Identify all key players for the Systems Implementation phase and orient them on their specific roles. We’ll make sure they know what possible hitches may come their way and how to deal with them.
  • Identify all end users and their corresponding functions, then assign appropriate access rights.
  • Draw multi-layered contingency plans to capture and address each possible concern that may crop up during Deployment.
  • Prepare a systematic step-by-step procedure and checklist for the entire Deployment stage. Both of them should have been copied from a similar procedure and checklist used in the Acceptance testing phase.
  • Make all stakeholders understand the conditions required before Deployment can commence.
  • Set the appropriate environment so that all stakeholders know what to expect and when to expect them the moment Deployment commences.
  • Prepare Technical Services and Technical Support personnel for the gruelling mission ahead.
  • Make sure all communication processes are well coordinated so that everyone affected will know who to contact and how to get in touch with them when a problem arises.
  • Plan and schedule training sessions so that they can be conducted “just in time”. Training sessions conducted way ahead of Deployment are often useless because the trainees tend to forget about what they learned when the time comes to apply them. Similarly, training sessions conducted way after Deployment also become useless because trainees are seldom able to internalise instructions delivered during crash courses.

Deployment

There are two sets of issues to keep an eye on during Deployment:

  1. Issues directly related to the technology itself, e.g. application functionality and data integrity, and
  2. Issues emanating from the end users, i.e., their unwillingness to use the new system. One reason may be because they find the interface and procedures too confusing. Another would be due to other inconveniences that come with adapting to a new set of procedures.

Despite all the meticulous scrutiny employed during Acceptance testing, there are just some problems that are made obvious only during Deployment. Issues belonging to the first set are dealt with easily because of the plans and procedures we put in place during the Preparation stage. As an added measure, our team will be on hand to make sure contingency plans are executed accordingly.

While the second set of issues is often neglected by many IT consultancy companies, we choose to meet it head on.

We fully understand that end users are most sensitive to the major changes that accompany a new system. It is precisely for this reason why our training activities during Deployment are designed not only to educate them but also to make them fully appreciate the necessity of both the new system and the familiarisation phase they will need to go through.

The faster we can bring your end users to accept the new system, the faster they can refocus on your company’s business objectives.

Here’s what we’ll do to guarantee the smoothest Deployment process you’ve ever experienced.

  • Employ the procedure and checklist formulated during the Preparation stage.
  • Ensure all end users are well acquainted with any additional tasks they would need to perform (e.g. filling up manual logs).
  • Assess which legacy systems can still be used alongside the new technology and which ones have to be retired.
  • Supervise the installation and optimal configuration of all supporting hardware and software to make sure the likelihood of errors originating from them are brought to near-zero levels.
  • Supervise the installation and optimal configuration of the products themselves.
  • Carry out data migration tasks if necessary.
  • Organise and oversee parallel runs to check for data and report inconsistencies.
  • Conduct training sessions in a professional and well-timed manner to eliminate end-users’ feelings of agitation and to take advantage of memory absorption and retention duration as with regards to their assigned duties and responsibilities.

Transition

Do you often feel uneasy whenever the reins to a newly purchased IT system are handed over to you? Perhaps there are some issues that you feel haven’t been fully settled but, at the same time, find it too late to back out, having already invested so much time and resources.

Alright, so maybe the thought of “backing up” never crossed your mind. However, the concern of being “not yet ready” is raised by many organisations towards the tail end of most Deployment stages. This usually drags the Deployment stage into a never-ending process.

Our team of highly experienced specialists will make sure you reach this point with utmost confidence to proceed on your own.

To wrap up our comprehensive IT Systems Implementation offering, we’ll take charge of the following:

  • Verify that all deliverables, including training materials and other technical documentation, are accomplished and expected outcomes are realised.
  • Make sure all technical documentation are placed in a secure and accessible location.
  • Institute best practices to ensure the IT system becomes fully utilised and to reduce its exposure to avoidable risks.
  • Establish open communication lines with the Technical Support team to enable quick resolution of issues.
  • Ensure complete knowledge transfer has been fully achieved so that your people will spend less time calling Technical Support and more on operations contributory to business growth.
FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
eCommerce

 

We bet you’ve often read how getting rich through the Internet can be fast and easy. Time for your 5-second reality check: It’s going to entail lots of hard work, dedication, a great deal of information and the ability to use that information to your advantage. Sounds familiar?

Well, it should be. After all, it’s still business. However, while the basic ingredients to achieving success in business are still the basic prerequisites in eCommerce, there are also a lot of technical aspects that have to be factored in. This is where you’ll need us.

Well, actually, we’re going to help you out on those basic ingredients too. That’s because our dedicated specialists will perform most of the hard work until you gain enough know-how to run things on your own.

If you’re starting from scratch, we’ll help you build on your idea and transform it into an actual web-based business.

Then once you’ve got your site online, we’ll redirect traffic to it, attract the right visitors, convert those visitors into buyers and keep them satisfied so that they’ll come back and even spread the word.

Some of our related services include:

Ready to work with Denizon?