EcoVaro ? ESOS Solution on a Cloud

The UK?s Energy Saving Opportunity Scheme ? and all others in the EU stable – is bound to generate huge quantities of data beyond the reach of processing on standalone computers. This leaves some companies in the mandatory sector between a rock and a hard place. They already have to divert scarce talent to draft compliance reports. Now they face purchasing equipment with big data processing power.

The more astute are turning to cloud computing solutions like EcoVaro in increasing numbers. They are also keen to benefit from remote secure backup. .

Increasing migration to public clouds has caused a growth in niche big data consultants. EcoVaro is one of these. We want to do more than simply open up a port and leave you to become familiar with our technology. We service a growing group of companies who want us to analyse their energy usage reports, and isolate the main demand drivers so they know where to start saving.

We are consumer-centric energy consultants with the emphasis on corporates and sme?s. We offer more than just big data processing facilities. We also help set up your dashboard and are full of practical ideas you can use to start trimming energy costs right away. So please treat us as your affordable energy partner who really wants to help.

Finally, contact EcoVaro for a discussion.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Scrumming Down to Complete Projects

Everybody knows about rugby union scrums. For our purposes, perhaps it is best to view them as mini projects where the goal is to get the ball back to the fly-half no matter what the opposition does. Some scrums are set pieces where players follow planned manoeuvres. Loose / rolling scrums develop on the fly where the team responds as best according to the situation. If that sounds to you like software project management then read on, because there are more similarities?.

Isn’t Scrum Project Management the Same as Agile?

No it’s not, because Scrum is disinterested in customer liaison or project planning, although the team members may be happy to receive the accolades following success. In the same way that rugby players let somebody else decide the rules and arrange the fixtures, a software Scrum team just wants the action.

Scrum does however align closely ? dare I say interchangeably with Agile?s sprints. Stripping it of all the other stages frees the observer up to analyse it more closely in the context of a rough and tumble project, where every morning can begin with a backlog of revised requirements to back fit.

The 3 Main Phases of a Scrum

A Scrum is a single day in the life of a project, building onto what went before and setting the stage for what will happen the following day. The desired output is a block of component software that can be tested separately and inserted later. Scrumming is also a useful technique for managing any project that can be broken into discreet phases. The construction industry is a good example.

Phase 1 – Define the Backlog. A Scrum Team?s day begins with a 15 minute planning meeting where team members agree individual to-do lists called ?backlogs?.

Phase 2 – Sprint Towards the Goal. The team separates to allow each member to complete their individual lines of code. Little or no discussion is needed as this stage.

Phase 3 – Review Meeting. At the end of each working day, the team reconvenes to walk down what has been achieved, and check the interconnected functionality.

The 3 Main Phases of a Scrum ? Conclusions and Thoughts

Scrum is a great way to liberate a competent project team from unnecessary constraints that liberate creativity. The question you need to ask yourself as manager is, are you comfortable enough to watch proceedings from the side lines without rushing onto the field to grab the ball.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Systems Integration as a means to cost reduction

System integration in an organisation refers to a process whereby two or more separate systems are brought together for the purpose of pooling the value in the separate systems into one main system. A key component of process consolidation within any organisation is the utilisation of IT as a means to achieve this end. As such, system integration as a means to cost reduction offers organisations the opportunity to adopt and implement lean principles with the attendant benefits. The implementation of lean techniques requires an adherence to stated methods to facilitate the elimination of wastage in the production of goods and services. In summary, the lean philosophy seeks to optimise the speed of good and service production, through the elimination of waste.

While analysing some of the traditional sources of waste in organisational activities, things like overproduction, inventory, underutilised ideas, transmission of information and ideas, transportation of people and material, time wastage and over-processing stand out. The fact is that companies can eliminate a significant portion of waste through the utilisation of IT to consolidate processes within their organisation.

Adopting lean principles calls for the identification of all of the steps in the company value stream for each product family for the purpose of the eliminating the steps that do not create any value. In other words, this step calls for the elimination of redundant steps in the process flow. This is exactly what the utilisation of IT to consolidate processes offers a company. For instance, the adoption of a central cloud system across a large organisation with several facilities could increase efficiencies in that company. Such a company would drastically reduce the redundancies that used to exist in the different facilities, eliminate the instances of hardware and software purchase, maintenance and upgrade, modernise quality assurances processes and identify further opportunities for improvement.

Perhaps, from the company’s point of view, and from the perspective of lean process implementation, the most important factor is?the effect it has?on the bottom line.’reducing the number of hardware, eliminating the need for maintaining and upgrading hardware, removing the necessity for software purchase and upgrade across facilities also contributes to a significant reduction in operational costs.?This reduction in the cost of operations leads to a corresponding increase in the profit margin of the company.

Applying system integration as a means to cost reduction can also lead to the reduction in the number of people needed to operate the previous systems that have been integrated into one primary unit. Usually, companies must hire people with specialised knowledge to operate and maintain the various systems. Such employees must also receive special training and frequent ongoing education to constantly stay informed of the latest trends in process management. With the integration of the system, the number of people needed to maintain the central system will be significantly reduced, also improving the security of information and other company trade secrets.

Based on an analysis of the specific needs that exist in a particular company environment, a system integration method that is peculiar to the needs of that organisation will be worked out. Some companies may find it more cost-effective to use the services of independent cloud service providers. Others with more resources and facilities may decide to set up their own cloud service systems. Often, private cloud service system capabilities far exceed the requirements of the initiating company, meaning that they could decide to “sell” the extra “space” on their cloud network to other interested parties.

A company that fully applies the lean principles towards the integration of its systems will be able to take on additional tasks as a result of the system consolidation. This leads to an increase in performance, and more efficiency due to the seamless syncing of information in a timely and uniform manner.

Companies have to combine a top-down and a bottom-up approach towards their system integration methods. A top-down approach simply utilises the overall system structure that is already in place as a starting point, or as a foundation. The bottom-up approach seeks to design new systems for integration into the system. Other methods of system integration include the vertical, star and horizontal integration methods. In the horizontal method, a specified subsystem is used as an interface for communication between other subsystems. For the star system integration method, the subsystems are connected to the system in a manner that resembles the depiction of a star; hence, the name. Vertical integration refers to the method of the integration of subsystems based on an analysis of their functionality.

The key to successful system integration for the purpose of cost reduction is to take a manual approach towards identifying the various applicable lean principles, with respect to the system integration process. For instance, when value has been specified, it becomes easier to identify value streams. The other process of removing unnecessary or redundant steps will be easier to follow when the whole project is viewed from the whole, rather than’the part. Creating an integrated system needs some?patience?in order to work out kinks and achieve the desired perfect value that creates no waste.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Uncover hidden opportunities with energy data analytics

What springs to mind when you hear the words energy data analytics? To me, I feel like energy data analytics is not my thing. Energy data analytics, however, is of great importance to any organisation or business that wants to run more efficiently, reduce costs, and increase productivity. Energy efficiency is one of the best ways to accomplish these goals.

Energy efficiency is not about investment in expensive equipment and internal reorganization. Enormous energy saving opportunities is hidden in already existing energy data. Given that nowadays, energy data can be recorded from almost any device, a lot of data is captured regularly and therefore a lot of data is readily available.

Organisations can use this data to convert their buildings’ operations from being a cost centre to a revenue centre through reduction of energy-related spending which has a significant impact on the profitability of many businesses. All this is possible through analysis and interpretation of data to predict future events with greater accuracy. Energy data analytics therefore is about using very detailed data for further analysis, and is as a consequence, a crucial aspect of any data-driven energy management plan.

The application of Data and IT could drive significant cost savings in company-owned buildings and vehicle fleets. Virtual energy audits can be performed by combining energy meter data with other basic data about a building e.g. location, to analyse and identify potential energy savings opportunities. Investment in energy dashboards can further enable companies to have an ongoing look at where energy is being consumed in their buildings, and thus predict ways to reduce usage, not to mention that energy data analytics unlock savings opportunities and help companies to understand their everyday practices and operating requirements in a much more comprehensive manner.

Using energy data analytics can enable an organisation to: determine discrepancies between baseline and actual energy data; benchmark and compare previous performance with actual energy usage. Energy data analytics also help businesses and organisations determine whether or not their Building Management System (BMS) is operating efficiently and hitting the targeted energy usage goals. They can then use this data to investigate areas for improvement or energy efficient upgrades. When energy data analytics are closely monitored, companies tend to operate more efficiently and with better control over relevant BMS data.

Ready to work with Denizon?