Uncover hidden opportunities with energy data analytics

What springs to mind when you hear the words energy data analytics? To me, I feel like energy data analytics is not my thing. Energy data analytics, however, is of great importance to any organisation or business that wants to run more efficiently, reduce costs, and increase productivity. Energy efficiency is one of the best ways to accomplish these goals.

Energy efficiency is not about investment in expensive equipment and internal reorganization. Enormous energy saving opportunities is hidden in already existing energy data. Given that nowadays, energy data can be recorded from almost any device, a lot of data is captured regularly and therefore a lot of data is readily available.

Organisations can use this data to convert their buildings’ operations from being a cost centre to a revenue centre through reduction of energy-related spending which has a significant impact on the profitability of many businesses. All this is possible through analysis and interpretation of data to predict future events with greater accuracy. Energy data analytics therefore is about using very detailed data for further analysis, and is as a consequence, a crucial aspect of any data-driven energy management plan.

The application of Data and IT could drive significant cost savings in company-owned buildings and vehicle fleets. Virtual energy audits can be performed by combining energy meter data with other basic data about a building e.g. location, to analyse and identify potential energy savings opportunities. Investment in energy dashboards can further enable companies to have an ongoing look at where energy is being consumed in their buildings, and thus predict ways to reduce usage, not to mention that energy data analytics unlock savings opportunities and help companies to understand their everyday practices and operating requirements in a much more comprehensive manner.

Using energy data analytics can enable an organisation to: determine discrepancies between baseline and actual energy data; benchmark and compare previous performance with actual energy usage. Energy data analytics also help businesses and organisations determine whether or not their Building Management System (BMS) is operating efficiently and hitting the targeted energy usage goals. They can then use this data to investigate areas for improvement or energy efficient upgrades. When energy data analytics are closely monitored, companies tend to operate more efficiently and with better control over relevant BMS data.

Check our similar posts

2015 ESOS Guidelines Chapter 1 ? Who Qualifies

The base criteria are any UK undertaking that employs more than 250 people and/or has a turnover in excess of ?50 million and/or has a balance sheet total greater than ?43 million. There is little point in attempting to separate off high polluting areas. If one corporate group qualifies for ESOS, then all the others are obligated to take part too. The sterling equivalents of ?38,937,777 and ?33,486,489 were set on 31 December 2014 and apply to the first compliance period.

Representatives of Overseas Entities

UK registered branches of foreign entities are treated as if fully UK owned. They also have to sign up if any overseas corporate element meets the threshold no matter where in the world. The deciding factor is common ownership throughout the ESOS system. ecoVaro appreciates this. We have seen European companies dumping pollution in under-regulated countries for far too long.

Generic Undertakings that Could Comply

The common factor is energy consumption and the organisation’s type of work is irrelevant. The Environmental Agency has provided the following generic checklist of undertakings that could qualify:

Limited Companies Public Companies Trusts
Partnerships Private Equity Companies Limited Liability Partnerships
Unincorporated Associations Not-for-Profit Bodies Universities (Per Funding)

Organisations Close to Thresholds

Organisations that come close to, but do not quite meet the qualification threshold should cast their minds back to previous accounting periods, because ESOS considers current and previous years. The exact wording in the regulations states:

?Where, in any accounting period, an undertaking is a large undertaking (or a small or medium undertaking, as the case may be), it retains that status until it falls within the definition of a small or medium undertaking (or a large undertaking, as the case may be) for two consecutive accounting periods.?

Considering the ?50,000 penalty for not completing an assessment or making a false or misleading statement, it makes good sense for close misses to comply.

Joint Ventures and Participative Undertakings

If one element of a UK group qualifies for ESOS, then the others must follow suit with the highest one carrying responsibility. Franchisees are independent undertakings although they may collectively agree to participate. If trusts receive energy from a third party that must do an ESOS, then so must they. Private equity firms and private finance initiatives receive the same treatment as other enterprises. De-aggregations must be in writing following which separated ESOS accountability applies.

Green Business!

Carbon emissions reduction has evolved beyond simply good citizenship to being a business tool. Implementing ?green? initiatives is now a competitive weapon which defines real business opportunities and bottom line savings that can contribute significant financial value to the organisation while meeting demanding customer requirements for sustainable and low-carbon products.

Energy efficiency is a low cost resource for achieving carbon emissions reduction. Better energy efficiency simply translates to lesser carbon emissions and less energy usage which translates into saved costs.

Reduction of an organisations carbon footprint is each and everyone?s responsibility. Human activities are the key responsibility for the release of greenhouse gas emissions into the atmosphere. These include usage of electricity generated from fossil fuel, heating or driving.

At the corporate level, various measures can be instigated to increase energy efficiency. Some of these can be, having zone lighting with sensors to minimise unnecessary office lighting, timers on large IT equipment, promoting energy efficient behaviour in the office, asking staff to switch off and unplug appliances when not in use and minimising staff travel.
At the individual level; it is the small habits that count; cultivating the habit of switching off unnecessary lights, plugging out appliances that are not in use, using video conferencing or online chatting instead of having to travel to meetings, using public transport instead of taking a taxi/ personal car and using energy efficient cars.

All these initiatives assist organisations in their corporate social responsibility reports and play a role in sustainability rankings which is instrumental to customers who are increasingly considering sustainability rankings in investment decisions, while achieving the goal of cost reduction internally.

What Sub-Metering did for Nissan in Tennessee

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ?We’ve already squeezed the lemon dry,? they seemed to say. ?What makes you think there?s more to come??

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ?The only disadvantage of sub-metering is that now we can’t imagine doing without it.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?