Big Energy Data Management

Recent times have seen the advent of cloud based services and solutions where energy data is being stored in the cloud and being accessed from anywhere, anytime through remote mobile devices. This has been made possible by web-based systems that can usually bring real-time meter-data into clear view allowing for proactive business and facility management decisions. Some web based systems may even support multi utility metering points and come in handy for businesses operating multiple sites.

Whereas all this has been made possible by increased use of smart devices/ intelligent energy devices that capture data at more regular intervals; the challenge facing businesses is how to transform the large data/big volume of data into insights and action plans that would translate into increased performance in terms of increased energy efficiency or power reliability.

A solution to this dilemma facing businesses that do not know how to process big energy data, may lie in energy management software. Energy management software?s have the capability to analyse energy consumption for, electricity, gas, water, heat, renewables and oil. They enable users to track consumption for different sources so that consumers are able to identify areas of inefficiency and where they can reduce energy consumption, Energy software also helps in analytics and reporting. The analytics and reporting features that come with energy software are usually able to:

? Generate charts and graphs ? some software?s give you an option to select from different graphs

? Do graphical comparisons e.g. generate graphs of the seasonal average for the same season and day type

? Generate reports that are highly customisable

While choosing from the wide range of software available, it is important for businesses to consider software that has the capacity to support their data volume, software that can support the frequency with which their data is captured and support the data accuracy or reliability.

Energy software alone may not make the magic happen. Businesses may need to invest in trained human resources in order to realise the best value from their big energy data. Experts in energy management would then apply human expertise to leverage the data and analyse it with proficiency to make it meaningful to one?s business.

Check our similar posts

FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Saving Energy Step 3 ? Towards a Variable Energy Bill

Do you remember the days when energy was so cheap we paid the bill almost without thinking about it? Things have changed and we have the additional duty of reducing consumption to help save the planet. This is the third article in our mini-series on saving energy. It follows on from the first that explored implementing a management system, and the second listing practical things to implement on the shop floor. These open up the possibility of the variable energy bill we expand on as follows.

If ?variable energy bill? sounds strange to you, I used the unusual turn of phrase to encourage you to view things in a different light. We need to move on from the ?pie chart? mentality where we focus on the biggest numbers like materials, facilities and labour, and zoom in on energy where we can achieve similar gains faster with less pain. But first, we need to see beyond the jargon that governments and consultants love, and get to grips with the reality that we can vary our energy bill and bring cost down.

As executives we recognise this, although other pressures distract us from accepting it as a personal goal. And so we delegate it down the organisation to a level where it becomes ?another crazy management idea? we have to follow to stay out of trouble. I read somewhere that half the world?s organisations do not have energy as a defined objective to monitor in the C Suite. No wonder commerce is only pecking away at energy wastage at a rate of 1% per year.

Find out where you are ?spending energy? and relate this to your core business. If there are places where you are unable to make a connection, challenge the activity?s right to exist. Following the energy trail produces unexpected benefits because it permeates everything we do.

  • Improved product design reducing time spent in factory
  • Streamlined production schedules reducing machine run times
  • Less wear on equipment reducing costly maintenance
  • A more motivated workforce that is prouder of ?what we do?

As you achieve energy savings you can pass these on in terms of lower prices and greater market share. All this and more is possible when you focus on the variables behind your energy bill. Run the numbers. It deserves more attention than it often gets.

2015 ESOS Guidelines Chapter 3 to 5 ? The ESOS Assessment

ESOS operates in tandem with the ISO 50001 (Energy Management) system that encourages continual improvement in the efficient use of energy. Any UK enterprise qualifying for ESOS that has current ISO 50001 certification on the compliance date by an approved body (and that covers the entire UK corporate group) may present this as evidence of having completed its ESOS assessment. It does however still require board-level certification, following which it must notify the Environment Agency accordingly.

The Alternate ESOS Route

In the absence of an ISO 50001 energy management certificate addressing comprehensive energy use, a qualifying UK enterprise must:

  1. Measure Total Energy Consumption in either kWh or energy spend in pounds sterling, and across the entire operation including buildings, industrial processes and transport.
  2. Identify Areas of Significant Energy Consumption that account for at least 90% of the total. The balance falls into a de minimis group that is officially too trivial to merit consideration.
  1. Consider Available Routes to Compliance. These could include ISO 500001 part-certification, display energy certificates, green deal assessments, ESOS compliant energy audits, self-audits and independent assessments
  1. Do an Internal Review to make sure that you have covered every area of significant consumption. This is an important strategic step to avoid the possibility of failing to comply completely.
  1. Appoint an Approved Lead Assessor who may be internal or external to your enterprise, but must have ESOS approval. This person confirms you have met all ESOS requirements (unless you have no de minimis exceptions).
  1. Obtain Internal Certification by one of more board-level directors. They must certify they are satisfied with the veracity of the reports. They must also confirm that the enterprise is compliant with the scheme.
  1. Notify the Environment Agency of Compliance within the deadline using the online notification system as soon as the enterprise believes is fully compliant.
  1. Assemble your ESOS Evidential Pack and back it up in a safe place. Remember, it is your responsibility to provide proof of the above. Unearthing evidence a year later it not something to look forward to.

The ESOS assessment process is largely self-regulatory, although there are checks and balances in place including lead assessor and board-level certifications. As you work through what may seem to be a nuisance remember the primary objectives. These are saving money and reducing carbon emissions. Contact ecoVaro if we can assist in any way.

Ready to work with Denizon?