Owing to the complexity of its definition, many people loosely use the phrase Internet of Things (IoT) without having a solid grasp of its true meaning. A majority in this category take IoT to be nothing more than the automation of home gadgets, where the internet is used to interconnect computing components embedded in everyday devices.
Granted, the whole idea of IoT got its roots from the home setting. Nevertheless, IoT has outgrown that spectrum and has since penetrated into almost every area of business and industry. By employing IoT, you can literally take full control of everything in your business using a single device. From assigning tasks to monitoring security, managing bills to tracking time, IoT has revolutionized the way business is done.
Interestingly, not so long ago, most technology experts limited their forecasts to machine-to-machine (M2M) integration and Augmented Reality (AR), which also, admittedly, hit the technology industry with an admirable suave. Back then, it could have been laughable for anyone to have suggested that IoT would be so commanding in almost every industry, including real estate, medicine, automobile, and more.
It’s not for nothing, therefore, that the field service industry has also embraced IoT, integrating it in the daily running of business activities, including tracking machine diagnostics, detecting breakdowns, and assigning field engineers to attend to customer needs.
How the Field Service Industry is Benefiting from IoT
Machine uptime has remained an ongoing concern for many customers. In the traditional approach, whenever a machine breaks down, the customer alerts the service provider and then the field service manager checks to see if there is any field engineer available for a new task. Once an engineer has been identified, he?s then dispatched to the site. This worked, but it resulted in an extended machine downtime, a terrible experience for customers.
Thanks to IoT, things are now happening differently.
IoT is now integrating machines to a central communications centre, where all alerts and status updates are sent. The notifications are instant. The field service manager, therefore, gets to learn of the status of machines at the exact time of status change. An engineer who?s not engaged would then be immediately assigned to undertake any needed servicing or repair.
By employing IoT, the service provider receives timely reports relating to diagnostics, machine uptime, part failures, and more. The field manager can, as a result, foretell and forestall any possible downtime.
How has this been helpful?
Before giving a definite answer to that question, it’s crucial to note that more than half of all field service organizations now employ IoT in their Asset Management Systems and Field Service Management. And to answer the question, all the organizations that have the two systems integrated using IoT experience twice as much efficiency as those that don’t, states an Aberdeen Group report. As you already know, improved efficiency results in a corresponding upshot in customer satisfaction.
Apps Making a Difference in IoT-Field Service
The integration of IoT into almost every aspect of business prompted the design and development of different applications to link computing devices. Since the advent of IoT, the software development for the technology has come of age. Powerful and lightweight apps that don simple yet beautiful user interfaces are now readily available at affordable price tags.
ecoVaro not only helps businesses to monitor energy and other relevant environmental data such as Electricity, Gas, Water, Oil, Carbon, Temperature, Humidity, Solar Power, and more, but also provides analytics and comprehensive yet easy to understand reports. The data received from devices such as meters is converted into useful information that’s then presented in figures and graphs, thus allowing you to make decisions based on laid down controls.
The focus of the app is to instantly alert service engineers to go on site to fix issues.
With ecoVaro, field service engineers no longer have to return to the office to get new instructions. Also, customers don’t have to manually fire alerts to the service provider whenever something isn’t working correctly. By employing the latest in IoT, ecoVaro sends notifications to field service managers and engineers about respective customers that need support.
How ecoVaro Helps
Best-in-class companies aren’t ready to compromise on customer satisfaction. Therefore, every available avenue is used to address customer concerns with the deserved agility. By using IoT, ecoVaro makes it possible for field service providers to foresee and foreclose any possible breakdowns.
The inter-connectivity among the devices and the central communications centre results in increased revenue and improved interactivity between the system and the field engineers. This results in greater efficiency and lower downtime, which translates into improved productivity, accountability, and customer satisfaction, as well as creating a platform for a possible expansion of your customer base.
ecoVaro isn’t just about failed machines and fixes. It also provides diagnostics about connected systems and devices. With this, the diagnostics centre receives system reports in a timely manner, allowing for ease of planning and despatch of field officers where necessary.
Clearly, but using the right application, IoT can transform your business into an excellently performing field service company.
When past actions in software development return to haunt you…
Is your business being bogged down by technical debt? Let’s look at measures that you can take to reduce it and scale your operations without the weight pulling you back.
Work with a flexible architecture.
Right from the word go, you want to use architecture whose design is malleable, especially with the rapid rate of software evolution witnessed today. Going with an architecture that keeps calling for too much refactoring, or whose design won’t accommodate future changes will leave you with costly technical debt. Use scalable architecture that allows you to modify or add new features in future releases. While on this, complex features required in the final product should be discussed at the planning stage, that way simplified solutions that will be easier to implement can be identified, as this will lead to less technical debt in the long run.
The Deal with Refactoring
This is basically cleaning up the code structure without changing its behaviour. With the updates, patches, and new functionalities that are added to the systems and applications, each change comes with the threat of more technical debt. Additionally, organisations are increasingly moving their IT infrastructure from on-premises facilities to colocation data centres and deploying them on the cloud. In such scenarios, some workarounds are often needed to enable the systems to function in the new environments, which they hadn’t been initially developed to accommodate. Here, you will need to take some time to refactor the existing system regularly, streamlining the code and optimizing its performance – and this will be key to pay down the tech debt. When working with a flexible architecture from the start, the amount of work that goes into this will be reduced, meaning there’ll be less tech debt involved.
Run discovery tests
Discovery testing essentially takes place even before a line of code is written for the system or application. This takes place at the product definition stage, where human insight software is used to understand the needs of the customer and is particularly helpful in setting priorities for the development work that will be carried out. It gives your business the opportunity to minimize the technical debt by allowing customers to give you a roadmap of the most pertinent features desired from the product.
Routine code review
Getting a fresh look at the product or application from different sets of eyes in the development team will improve the quality of the code, thus reducing technical debt. There’s a catch though – this should be planned in a convenient way that doesn’t end up becoming a burden for the developers. Here are suggestions:
● Break down pull requests
Instead of having complex pull requests where numerous changes in the code are introduced at a go, have this broken down into smaller manageable pull requests, each with a brief title and description about it. This will be easier for the code reviewer to analyse.
● Define preferred coding practices
Documenting the preferred coding style will result in cleaner code, meaning the developers will focus their effort on reviewing the code itself, not losing time on code format debates.
Test automation
Relying only on scheduled manual testing opens you up to the risk of technical debt accruing rapidly, and not having sufficient resources to deal with the accumulated problems when they are identified. Automated testing on the other hand enables issues to be uncovered quicker, and with more precision. For instance, you can have automated unit tests that look at the functioning of the individual components of a system, or regression testing where the focus is on whether the code changes that have been implemented have affected related components of the system. However, establishing and maintaining automated testing will require quite some effort – making it more feasible for the long-term projects.
Keep a repository that tracks changes made
Do you have a record of changes made in the software? Keeping one in a repository that is accessible by the development team will make it easy to pin-point problems at their source. For instance, when software is being migrated to a new environment, or legacy software is in the process of being modernised, you will want to have an accurate record of changes that are being introduced, that way if there is an undesired impact on the system this it will be easier to zero-down on the cause.
Bring non-technical stakeholders on board
Does this conversation sound familiar?
Development Team: “We need to refactor the messy code quickly”
Product Team: “We have no idea what you are saying”
On one hand, you have the management or product team defining the product requirements, creating a project roadmap, and setting its milestones. On the other hand, there’s the software development/engineering that’s primarily focused on the product functionality, technical operations and clearing the backlog in code fixes. Poor communication between the two teams is actually a leading cause of technical debt.
For you to take concrete steps in managing your technical debt, the decision-makers in the organisation should understand its significance, and the necessity of reducing it. Explain to them how the debt occurred and why steps need to be taken to pay it down – but you can’t just bombard them with tech phrases and expect them to follow your thought process.
So how do you go about it? Reframe the issues involved with the technical debt and explain the business value or impact of the code changes. Basically, the development team should approach it from a business point of view, and educate the management or production team about the cost of the technical debt. This can include aspects such as expenses in changing the code, salaries for the software engineers especially when the development team will need to be increased due to the workload piling up, as well as the revenue that is lost when the technical debt is allowed to spiral.
The goal here is to show the management or production team how issues like failing to properly define the product requirements will slow down future software development, or how rushing the code will affect the next releases. That way, there will be better collaboration between the teams involved in the project.
Allocate time and resources specifically for reducing technical debt
With management understanding that working with low-quality code is just like incurring financial debt and it will slow down product development, insist on setting time to deal with the debt.
For instance, when it comes to the timing of application releases, meetings can be conducted to review short- and longer-term priorities. These meetings – where the development team and product team or management are brought together, the developers point out the software issues that should be resolved as a priority as they may create more technical debt. Management then ensures that budgets and plans are put in place to explicitly deal with those ongoing maintenance costs.
Retire old platforms
While most of the resources are going into developing new applications and improving the systems being used, the organisation should also focus on retiring the old applications, libraries, platforms, and the code modules. It’s recommended that you factor this into the application release plans, complete with the dates, processes and costs for the systems involved.
Total overhaul
When the cost and effort of dealing with the technical debt far outweighs the benefits, then you may have to replace the entire system. At this tipping point, you’re not getting value from the technical debt, and it has become a painful issue that’s causing your organisation lots of difficulties. For instance, you may be dealing with legacy software where fixing it to support future developments has simply become too complicated. The patches available may only resolve specific issues with the system, and still leave you with lots of technical debt. Here, the best way out is to replace the system in its entirety.
Final thoughts
Every software company has some level of tech debt. Just like financial debt, it is useful when properly managed, and a problem when ignored or allowed to spiral out of control. It’s a tradeoff between design/development actions and business goals. By taking measures to pay down your organization’s debt and address its interest as it accrues, you will avoid situations where short term solutions undermine your long-term goals. This is also key to enable your business to transition to using complex IT solutions easier, and even make the migration between data centres much smoother. These 8 measures will enable you to manage your technical debt better to prevent it from being the bottleneck that stifles your growth.
For many people within the UK, water is not really something to worry about. Surely enough of it falls out the sky throughout the year that it does feel highly unlikely that we?ll ever run out of it. There certainly does seem to be an abundance of Branded Water available in plastic bottles on our supermarket shelves.
Water, water, every where, And all the boards did shrink; Water, water, every where, Nor any drop to drink.
Despite this, Once-unthinkable water crises are becoming commonplace. If you consider that In England and Wales, we use 16 billion litres of clean drinking water every day ? that’s equivalent to 6,400 Olympic sized swimming pools.
Currently, water companies can provide slightly more than we need ? 2 billion litres are available above and beyond what we’re using. In some areas, though, such as south east England, there is no surplus and, as such, these regions are more likely to face supply restrictions in a dry year.
If we take little moment to reflect on some of the most notable water related stories over the past few years, we’ll start to get a picture of just how real the potential and the threat of water shortages can be.
Reservoirs in Chennai, India?s sixth-largest city, are nearly dry right now. Last year, residents of Cape Town, South Africa narrowly avoided their own Day Zero water shut-off.
It was only year before that, Rome rationed water to conserve scarce resources.
Climate change is likely to mean higher temperatures which may drive up the demand for water (alongside population growth) and increase evaporation from reservoirs and water courses during spring and summer.
The impact of climate change on total rainfall is uncertain, but the rain that does fall is likely to arrive in heavier bursts in winter and summer. Heavier rain tends to flow off land more quickly into rivers and out to sea, rather than recharging groundwater aquifers.
A greater chance of prolonged dry periods is also conceivable. This combined with the harsh reality that no human population can sustain itself without sufficient access to fresh water.
If present conditions continue, 2 out of 3 people on Earth will live within a water-stressed zone by 2025
What is water stress?
Water stress is a term used to describe situation when demand for water is greater than the amount of water available at a certain period in time, and also when water is of poor quality and this restricts its usage. Water stress means deterioration in both the quantity of available water and the quality of available water due to factors affecting available water.
Water stress refers to the ability, or lack thereof, to meet human and ecological demand for water. Compared to scarcity, water stress is a more inclusive and broader concept.
Water Stress considers several physical aspects related to water resources, including water scarcity, but also water quality, environmental flows, and the accessibility of water.
Supply and Demand
Major factors involved when water scarcity strikes is when a growing populations demand for water exceeds the areas ability to service that need.
Increased food production and development programs also lead to increased demand for water, which ultimately leads to water stress.
Increased need for agricultural irrigation in order to produce more crops or sustain livestock are major contributors to localised water stress.
Overconsumption
The demand for water in a given population is fairly unpredictable. Primarily, based on the fact that you can never accurately predict human behaviour and changes in climate.
If too many people are consuming more water than they need because they mistakenly believe that water is freely available and plentiful, then water stress could eventually occur.
This is also linked to perceived economic prosperity of a give region. Manufacturing demand for water can have huge impact regardless whether water is actively used within the manufacturing process or not.
Water Quality
Water quality in any given area is never static. Water stress could happen as a result of rising pollution levels having a direct impact on water quality.
Water contamination happens when new industries either knowingly or unknowingly contaminate water with their industrial practices.
Largely, this can happen and frequently does so because these industries do not take effective control of monitoring and managing their impact on communal water supplies. Incorrectly assuming this is the responsibility of an additional third party like the regional water company.
The truth is, water quality and careful monitoring of it is all of our responsibility.
Water Scarcity
Simple increases in demand for water can in itself contribute to water scarcity. However, these are often preceded by other factors like poverty or just the natural scarcity of water in the area.
In many instances, the initial locations of towns or cities were not influenced by the close proximity of natural resources like water, but rather in pursuit of the extraction of other resources like Gold, Coal or Diamonds.
For Instance, Johannesburg, South Africa is the largest City in South Africa and is one of the 50 largest urban areas in the world. It is also located in the mineral rich Witwatersrand range of hills and is the centre of large-scale gold and diamond trade.
Johannesburg is also one of the only major cities of the world that was not built on a river or harbour. However, it does have streams that contribute to two of Southern Africas mightiest rivers – Limpopo and the Orange rivers. However, most of the springs from which many of these streams emanate are now covered in concrete!
Water Stress and Agriculture
Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.
The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of real-time data and utilize cloud-based storage and processing power to curate it.
Sentek?s technology can be found in remote places like Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.
This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily repositioned to other locations as crops rotate.
Peter Buss is convinced that measurement is a means to an end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By accurately monitoring water can be saved until when the plant really needs it.
Peter also emphasises that crop is the ultimate sensor, and that ?we should ask the plant what it needs?.
This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return.
The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.
There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us.
Ecovaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.
A Quarter of the World?s Population, Face High Water Stress
Data from WRI?s Aqueduct tools reveal that 17 countries? home to one-quarter of the world?s population?face ?extremely high? levels of baseline water stress, where irrigated agriculture, industries and municipalities withdraw more than 80% of their available supply on average every year.
Water stress poses serious threats to human lives, livelihoods and business stability. It’s poised to worsen unless countries act: Population growth, socioeconomic development and urbanization are increasing water demands, while climate change can make precipitation and demand more variable.
How to manage water stress
Water stress is just one dimension of water security. However, like any challenge, its outlook depends on adequate monitoring and management of environmental data.
Even countries with relatively high water stress have effectively secured their water supplies through proper management by leveraging the knowledge they have garnered by learning from the data they gathered.
3 ways to help reduce water stress
In any geography, water stress can be reduced by measures ranging from common sense to innovative technology solutions.
There are countless solutions, but here are three of the most straightforward:
1. Increase agricultural efficiency: The world needs to make every drop of water go further in its food systems. Farmers can use seeds that require less water and improve their irrigation techniques by using precision watering rather than flooding their fields.
Businesses need to increase investments to improve water productivity, while engineers develop technologies that improve efficiency in agriculture.
2. Invest in grey and green infrastructure: D Data produced by Aqueduct Alliance – shows that water stress can vary tremendously over the year. WRI and the World Bank?s researchshows that built infrastructure (like pipes and treatment plants) and green infrastructure (like wetlands and healthy watersheds) can work in tandem to tackle issues of both water supply and water quality.
3. Treat, reuse and recycle: We need to stop thinking of wastewater as waste.
Treating and reusing it creates a ?new? water source.
There are also useful resources in wastewater that can be harvested to help lower water treatment costs. For example, plants in Xiangyang, China and Washington, D.C. reuse or sell the energy- and nutrient-rich byproducts captured during wastewater treatment.
Summary
The data is undeniably clear, there are very worrying trends in water.
Businesses and other other organisations need to start taking action now and investing in better monitoring and management, we can solve water issues for the good of people, economies and the planet. We collectively cannot kick this can down the road any further, or assume that this problem will be solved by others.
It is time, for a collective sense of responsibility and for everyone to invest in future prosperity of our Planet as a collective whole. Ecological preservation should be at the forefront of all business plans because at the end of the day profit is meaningless without an environment to enjoy it in!
Total Quality Management (TQM) is another business management approach that focuses on the involvement of all members of the organisation to participate in improving processes, products, services, and the culture in which they work in. It is important that every team member realises how each individual and each activity affects, and in turn is affected by, others.
With the use of combined quality and management tools, TQM also aims to reduce losses brought about by wasteful practices, a common concern in most companies. Using the TQM strategy, business would also be able to identify the cause of a defect, thereby preventing it from entering the final product.
Deming’s 14 Points
At the core of the Total Quality Management concept and implementation is Deming’s 14 points, a set of guidelines on quality as conceptualised by W Edwards Deming, one of the pioneers of quality. Deming’s 14 points are as follows:
Create constancy of purpose for improving products and services.
Adopt the new philosophy.
Cease dependence on inspection to achieve quality.
End the practice of awarding business on price alone; instead, minimise total cost by working with a single supplier.
Improve constantly and forever every process for planning, production and service.
Institute training on the job.
Adopt and institute leadership.
Drive out fear.
Break down barriers between staff areas.
Eliminate slogans, exhortations and targets for the workforce.
Eliminate numerical quotas for the workforce and numerical goals for management.
Remove barriers that rob people of pride of workmanship, and eliminate the annual rating or merit system.
Institute a vigorous program of education and self-improvement for everyone.
Put everybody in the company to work accomplishing the transformation.
But if you were to reduce to bare bones the TQM philosophy from Deming’s 14 points, it would all come down to two simple goals:
To make things right the first time; and
To work for continuous improvement.
As with all other quality management process, the end goal is to be able to offer products and services that meet and even exceed customer’s expectations.
Find out more about our Quality Assurance services in the following pages: