Symbion Pharmacy Services? Definition of Responsibility

A ?symbion? is an organism in a symbiotic (i.e. mutually beneficial) relationship with another one. In the case of Australia?s giant Symbion Pharmacy Services, this means supplying and delivering over-counter Chemmart medicines to more than 3,000 hospital and retail pharmacies, while remaining mindful of its carbon footprint.

In 1999, the company with the tagline ?life matters? and a desire to be seen as ?a good corporate citizen? decided it was time to measure exactly what it was pumping out from 12 facilities and over 200 vehicles. This was a voluntary decision as even now there is still no carbon emissions law in Australia (although no doubt being a ?first mover? will put the company in a competitive position when this inevitably comes).

Symbion decided to install emission detection devices and connect these to a central monitoring system with the intention of managing what these measured. There were two stages to this process. First, Symbion determined its reporting requirements based on one of its larger warehouses. Following that, it established a carbon footprint for each of its wholly owned and managed facilities. This put it in a position to:

  • Analyse total emissions down to a level of detail where it understood the contribution of each source
  • Use big data management tools to identify carbon hotspots for priority remedial action
  • Inform the affected workforce, explain the monitoring system and keep them in the loop
  • Separately manage energy abatement programs such as lighting and delivery routes

The program also had productivity spin-offs in that it focused management attention on the processes behind the emissions that were ripe for material and system improvements. It also provided marketing leverage. Symbion?s customers are in the wellness business, ahead of the curve when it comes to how emissions contribute to chronic illness, and aware of the cost of this in terms of human capital.

EcoVaro could help you manage your throughputs by analysing your data on our cloud-based system. This includes trending your metrics, comparing them to your industry seasonal average, and providing you with a business-like view of how well you are doing.

Our service reduces your reliance on (and the cost of) third party audits, and simplifies the reporting process to your controlling authority. It simply makes more sense to contract your software out this way, and only pay for it when you need it.

Check our similar posts

Competencies, Roles and Responsibilities of Lead Assessors

Any organisation that opts for energy audits, Display of Energy Certificates and Green Deal Assessments needs a lead assessor to review the chosen ESOS compliance routes. The Derivative provides that energy audits should be carried out independently by qualified and accredited experts. Additionally, these audits should be implemented as well as supervised by independent authorities under the national legislation.

Lead assessors undertake several roles in ESOS assessments. He or she is the one responsible to take the lead of the entire assessment team, prepare the plan, conduct the meetings and submit the formal report to governing authorities. Nevertheless, selecting an appropriate lead assessor is an important element that every organisation should carefully consider.

Competencies Requirements of Lead Assessors

Lead assessors should be knowledgeable enough with in-depth expertise in carrying out energy efficiency assessment. They should also possess foundational, functional and technical competencies to deliver the task effectively. Likewise, consider the assessors? sector experiences, familiarity with your business? technologies and properties, and accreditation with prescribed standards.

As you choose your lead assessor, contemplate on the skills and qualifications that would give your organisation benefits.

Roles and Responsibilities of Lead Assessors

The business organisation is responsible for the overall legal ESOS compliance. Moreover, here are some of the roles and responsibilities that lead assessors should assume in ESOS assessments.

The lead assessor agrees on the audit methodologies that the organisation would undergo in new audits. He or she agrees with the ESOS participant regarding the audit timetable, sampling approach and visits required. It is also the lead assessor?s role to identify the opportunities on energy saving and assist in calculating the cost savings from the measures taken. During the ESOS audits, the lead assessor determines the energy use profiles, presents the recommendations and reviews the entire assessment as a whole. Furthermore, he or she should maintain the evidence pack of the ESOS to uphold the audit’s credibility, its findings and recommendations.

Finding Lead Assessors

Energy and environment professionals would only be able to demonstrate their expertise as lead assessors upon registering in a professional body accredited by the Environment Agency. Any business that needs a lead assessor is advised to check on the EA?s website to see the details of approved registers.

Lead assessors can either be in-house experts or external professionals. However, they should be able to provide proof of membership as an approved register to take the role of a lead assessor. If the organisation has an internal lead assessor, the company should then take the final ESOS assessment to two board-level directors that would sign the formal report.

Indeed, the lead assessor is an organisation’s partner when it comes to delivering great results. With good professional conduct and excellent management of an assessment team, the lead assessor can help achieve breakthrough energy efficiency strategies. More than anything else, the organisation will benefit from maximum energy savings opportunities ahead. Thus, every qualified business enterprise should invest in finding the best lead assessor to guide them towards success.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Sub-Metering did for Nissan in Tennessee

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ?We’ve already squeezed the lemon dry,? they seemed to say. ?What makes you think there?s more to come??

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ?The only disadvantage of sub-metering is that now we can’t imagine doing without it.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
UK Government Updates ESOS Guidelines

Britain?s Environment Agency has produced an update to the ESOS guidelines previously published by the Department of Energy and Climate Change. Fortunately for businesses much of it has remained the same. Hence it is only necessary to highlight the changes here.

  1. Participants in joint ventures without a clear majority must assess themselves individually against criteria for participation, and run their own ESOS programs if they comply.
  2. If a party supplying energy to assets held in trust qualifies for ESOS then these assets must be included in its program.
  3. Total energy consumption applies only to assets held on both the 31 December 2014 and 5 December 2015 peg points. This is relevant to the construction industry where sites may exchange hands between the two dates. The definition of ?held? includes borrowed, leased, rented and used.
  4. Energy consumption while travelling by plane or ship is only relevant if either (or both) start and end-points are in the UK. Foreign travel may be voluntarily included at company discretion. The guidelines are silent regarding double counting when travelling to fellow EU states.
  5. The choice of sites to sample is at the discretion of the company and lead assessor. The findings of these audits must be applied across the board, and ?robust explanations? provided in the evidence pack for selection of specific sites. This is a departure from traditional emphasis on random.

The Environment Agency has provided the following checklist of what to keep in the evidence pack

  1. Contact details of participating and responsible undertakings
  2. Details of directors or equivalents who reviewed the assessment
  3. Written confirmation of this by these persons
  4. Contact details of lead assessor and the register they appear on
  5. Written confirmation by the assessor they signed the ESOS off
  6. Calculation of total energy consumption
  7. List of identified areas of significant consumption
  8. Details of audits and methodologies used
  9. Details of energy saving opportunities identified
  10. Details of methods used to address these opportunities / certificates
  11. Contracts covering aggregation or release of group members
  12. If less than twelve months of data used why this was so
  13. Justification for using this lesser time frame
  14. Reasons for including unverifiable data in assessments
  15. Methodology used for arriving at estimates applied
  16. If applicable, why the lead assessor overlooked a consumption profile

Check out: Ecovaro ? energy data analytics specialist 

Ready to work with Denizon?