Renewable energy – Is it a common man’s cup of tea?

I came across an article on a young graduate in renewable energy engineering. The fellow was doing technical sales and marketing jobs for renewable energy products though he felt that as a graduate, he ought to be doing more than just sales. His, sentiments, I can relate with but again thinking about the field of renewable energy, how many people understand what it is, its importance/ benefits, how to acquire it, its installation, costs etc.?Renewable energy is energy generated from natural resources. The renewable energy sources include sunlight, wind, rain, tides, geothermal heat and various forms of biomass. These sources are renewable naturally and continuously replenished, therefore this energy cannot be exhausted. Renewable energy technologies range from solar power, wind power, hydroelectricity/micro hydro, biomass and bio-fuels for transportation.Back to the aspiring young professional who felt that his place in the renewable energy sector lies in doing strategies and coming up with new products-the advice fronted to him was that doing technical sales is the best job for engineers, as it helps them impact on users of their products. Sales entail interacting with customers and knowing their needs so that the product features can be enhanced to suit the customer?s needs. Now, that is brilliant and accurate advice. It is however important to take into consideration that renewable energy is not a common man?s cup of tea and right now the focus all over the world is to build green economies.To me the need for more and more people to understand the benefits, savings and cost of renewable energy cannot be overemphasised. Effort should be made to keep marketing of renewable energy products/ services simple and conversational by avoiding use of acronyms or jargon explaining about operational details. More impact can be made if a marketing rather than technical sales approach is used. Technical sales have been described as boring (can be used as a sleeping aid), tends to use extensive vocabulary, jargon and acronyms that product users cannot relate with and tends to discuss the products technical aspects as opposed to the benefits to the customer. Fun should be created out of all this by making things simple and demonstrating cost savings and benefits of renewable energy.

Check our similar posts

Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

Saving Energy Step 2 ? More Practical Ideas

In my previous blog, we wrote about implementing a management system. This boils down to sharing a common vision up and down and across the organisation, measuring progress, and pinning accountability on individuals. This time, we would like to talk about simple things that organisations can do to shrink their carbon footprints. But first let’s talk about the things that hold us back.

When we take on new clients we sometimes find that they are baffled by what I call energy industry-speak. We blame this partly on government. We understand they need clear definitions in their regulations. It’s just a pity they don’t use ordinary English when they put their ideas across in public forums.

Consultants sometimes seem to take advantage of these terms, when they roll words like audit, assessment, diagnostic, examination, survey and review across their pages. Dare we suggest they are trying to confuse with jargon? We created ecoVaro to demystify the energy business. Our goal is to convert data into formats business people understand. As promised, here are five easy things your staff could do without even going off on training.

  1. Right-size equipment? outsource peak production in busy periods, rather than wasting energy on a system that is running at half capacity mostly.
  2. Re-Install equipment to OEM specifications ? individual pieces of equipment need accurate interfacing with larger systems, to ensure that every ounce of energy delivers on its promise.
  3. Maintain to specification ? make sure machine tools are within limits, and that equipment is well-lubricated, optimally adjusted and running smoothly.
  4. Adjust HVAC to demand ? Engineers design heating and ventilation systems to cope with maximum requirements, and not all are set up to adapt to quieter periods. Try turning off a few units and see what happens.
  5. Recover Heat ? Heat around machines is energy wasted. Find creative ways to recycle it. If you can’t, then insulate the equipment from the rest of the work space, and spend less money cooling the place down.

Well that wasn’t rocket science, was it? There are many more things that we can do to streamline energy use, and coax our profits up. This is as true in a factory as in the office and at home. The power we use is largely non-renewable. Small savings help, and banknotes pile up quickly.

Technology and process improvement

Tightening organisational flow to improve productivity and minimise costs is a growing concern for many businesses post the Global Financial Crisis. Businesses can no longer afford to waste time and personnel on inefficient processes. Organisations using either Six Sigma or Lean techniques better manage their existing resources to maximise product out-put. Both of these techniques involve considerable evaluation of current processes.

What is Six Sigma?

Six Sigma is an organisational management strategy that evaluates processes for variation. In the Six Sigma model, variation equates waste. Eliminating variation for customer fulfilment allows a business to better serve the end-user. In this thought model, the only way to streamline processes is to use statistical data. Each part of a process must be carefully recorded and analysed for variation and potential improvements. The heart of the strategy embodied by Six Sigma is mathematical. Every process is subject to mathematical analysis and this allows for the most effective problem solving.

What is a Lean Model?

Lean businesses do not rely on mathematical models for improvement. Instead, the focus is on reducing steps in the customer delivery cycle, which do not add value to the final deliverable. For example, maintaining excess inventory or dealing with shortages would both be examples of waste behaviour. Businesses that operate using Lean strategies have strong cash flow cycles. One of the best and most famous examples of Lean in action is the Toyota Production System (TPS). In this system, not only is inventory minimised, but physical movement for employees also remains sharply controlled. Employees are able to reach everything needed to accomplish their tasks, without leaving the immediate area. By reducing the amount of movement needed to work, companies also remove wasted employee time.

Industry Applications for Lean and Six Sigma

Lean businesses reduce the number of steps between order and delivery. The less inventory on hand, the less it costs a business to operate. In industries where it is possible to create to order, Lean thinking offers significant advantages. Lean is best utilised in mature businesses. New companies, operating on a youthful model, may not be able to identify wasteful processes. Six Sigma has shown its value across industries through several evolution’s. Its focus on quality of process makes it a good choice for even brand new businesses. The best use is the combination of the two strategies. With the Lean focus on speed and the Six Sigma focus on quality combined, the two organisational processes create synergy. By itself, Lean does not help create stable, repeating success. Six Sigma does not help increase speed and reduce non value-added behaviours. Combined, these two strategies offer incredible value to every business in cost savings.

Using Technology to Implement Lean Six Sigma

Automation processes represent an opportunity for businesses to implement a combination of both Lean and Six Sigma strategies. Any technology that replaces the need for direct human oversight reduces costs and increases productivity. A few examples of potentially cost saving IT solutions include document scanning, the Internet, and automated workflow systems.

  • Document Scanning – Reducing dependency on paper copies follows both Lean and Six Sigma strategies. It is a Lean addition in that it allows employees to access documents instantly from any physical location. It is Six Sigma compliant in that it allows a reduction on process variation, since there is no bottleneck on the flow of information.
  • The Internet – The automation potential offered by the Internet is limitless. Now, businesses can enter orders, manage logistics and perform customer service activities from anywhere, through a hosted portal. With instant access to corporate processes from anywhere, businesses can manage workflow globally, allowing them to realise cost savings from decentralisation.
  • Automated Work Systems – One of the identified areas of waste in any business is processing time. The faster orders are processed and delivered, the greater the profits for the company and the less the expense per order. When orders sit waiting for attention, they represent lost productivity and waste. Automated work systems monitor workflow and alert users when an item sits longer than normal. These systems can also reroute work to an available employee when the original worker is tied up.

Each of these IT solutions provides a method for businesses to either reduce the number of steps in a process or improve the quality of the process for improved customer service.

Identifying Areas for Lean Six Sigma Implementation

Knowing that improved processes result in improved profits, identifying areas for improvement is the next step. There are several techniques for creating tighter processes with less waste and higher quality. Value Stream Mapping helps business owners and managers identify areas of waste by providing a visual representation of the total process stream. Instead of improving single areas for minimal increases in productivity, VSM shows the entire business structure and flow, allowing management to target each area of slow down for maximum improvement in all areas.

Seeing the areas of waste helps management better determine how processes should work to best obtain the desired outcomes. Adding in automated processes helps with improved process management, when put in place with a complete understanding of current systems and their weaknesses. Start with mapping and gain a bird’s-eye view of the situation, in order to make the changes needed for improvement.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?